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Abstract 

Background Gingival phenotype plays an important role in dental diagnosis and treatment planning. Traditionally, 
determining the gingival phenotype is done by manual probing of the gingival soft tissues, an invasive and time‑
consuming procedure. This study aims to evaluate the feasibility and accuracy of an alternatively novel, non‑invasive 
technology based on the precise 3‑dimension (3D) soft tissue reconstruction from intraoral scanning and cone beam 
computed tomography (CBCT) to predict the gingival biotype.

Methods As a proof‑of‑concept, Yorkshire pig mandibles were scanned, and the CBCT data were fed into a deep‑
learning model to reconstruct the teeth and surrounding bone structure in 3D. By overlaying the CBCT scan with the 
intraoral scans, an accurate superposition was created and used for virtual measurements of the soft tissue thickness. 
Meanwhile, gingival thicknesses were also measured by a periodontal probe and digital caliper on the buccal and 
lingual sides at 3 mm apical to the gingival margin of the posterior teeth and compared with the virtual assessment at 
the same location. The data obtained from virtual and clinical measurements were compared by Wilcoxon matched‑
pairs signed‑rank analysis, while their correlation was determined by Pearson’s r value. The Mann–Whitney U test was 
used for intergroup comparisons of the amount of difference.

Results Among 108 investigated locations, the clinical and virtual measurements are strongly positively correlated 
(r = 0.9656, P < 0.0001), and only clinically insignificant differences (0.066 ± 0.223 mm) were observed between the 
two assessments. There is no difference in the agreement between the virtual and clinical measurements on sexu‑
ally matured samples (0.087 ± 0.240 mm) and pre‑pubertal samples (0.033 ± 0.195 mm). Noticeably, there is a greater 
agreement between the virtual and clinical measurements at the buccal sites (0.019 ± 0.233 mm) than at the lingual 
sites (0.116 ± 0.215 mm).

Conclusion In summary, the artificial intelligence‑based virtual measurement proposed in this work provides an 
innovative technique potentially for accurately measuring soft tissue thickness using clinical routine 3D imaging 
systems, which will aid clinicians in generating a more comprehensive diagnosis with less invasive procedures and, in 
turn, optimize the treatment plans with more predictable outcomes.
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Introduction
Appropriate orthodontic therapies can benefit periodon-
tal health by correcting pathological tooth migration and 
reducing intraosseous defects or furcation lesions [1, 2], 
as well as by enhancing periodontal bone regenerative 
outcomes via activating and stimulating the periodon-
tal ligament [3]. However, hard and soft tissue defects, 
such as dehiscence, fenestration, and recession, may also 
be induced by orthodontic treatments [4, 5]. When con-
sidering the situation in terms of periodontal pathology, 
active periodontal inflammation would cause alveolar 
bone resorption and tooth root damage during orthodon-
tic treatment [6], which has been haunting orthodontists 
recently since more and more orthodontic patients with 
periodontal problems are seen in the clinic, partially due 
to the increase of adults seeking orthodontic treatment 
[7]. Therefore, patients’ periodontal conditions must be 
closely monitored and controlled before and during the 
orthodontic treatment. Unfortunately, neither patients 
nor dental professionals are fully aware of the potential 
risk, etiology, and prevention strategies for periodontal 
complications related to orthodontic treatments [8]. Fur-
thermore, the majority of current clinical evaluations are 
still limited to the hard tissues [9–11], despite the fact 
that about 20–25% of patients develop gingival recession 
2 to 5 years after orthodontic treatment [4].

In the official proceedings from the 2018 Classifi-
cation of Periodontal and Peri-Implant Diseases and 
Conditions [12], a new term, periodontal phenotype, 
was adopted to describe the combination of both bone 
morpho-type (thickness of the bony plate) and gingival 
phenotype [three-dimensional (3D) gingival volume]. 
Accumulating studies have demonstrated that gingi-
val phenotypes respond differently to inflammation, 
restorative, trauma, and parafunctional habits [13]. 
For instance, surgical and restorative treatments post 
a higher risk of dehiscence, fenestration, and recession 
in patients with a thin periodontal phenotype, which 
can be attributed to the relatively inadequate soft tis-
sue [13]. A thin gingival phenotype is associated with 
the compromised blood supply to the underlying bone 
[14]. It may explain why tooth extraction and gingi-
val inflammation lead to more severe alveolar resorp-
tion in patients with a thin periodontal phenotype [15] 
and possibly explain why the success rate of periodon-
tal surgical procedures in those patients is also lower 
[16]. Moreover, the buccolingual alveolar and gingival 
thickness are essential concerns during orthodontic 

treatment [17, 18]. For example, when orthodontic 
forces that move the dentition outside of the alveolar 
housing, such as those introduced by improper arch 
expansion, were applied to a tooth in the zone of thin 
periodontal phenotype, a higher incidence of gingival 
recession, as well as bony dehiscence, was noticed [19]. 
On the contrary, a thick gingival phenotype is associ-
ated with increased stability of orthodontic outcomes 
and reduced periodontal complications in patients, 
particularly in terms of gingival recession/attachment 
loss [20]. Furthermore, the American Academy of Peri-
odontology recently embarked on a Best Evidence Con-
sensus Statement to emphasize that the periodontal 
phenotype critically impacts the outcome and stability 
of restorative, periodontal, and orthodontic treatments 
[21], highlighting the importance of gingival soft tissue 
diagnosis in clinical evaluation and treatment planning.

The current clinical methods of soft tissue thickness 
evaluation are conducted by subjective visual inspec-
tion, horizontal transmucosal bone sounding (aka. 
transgingival probing) [22], visual assessment of probe 
transparency through the gingival sulcus [23], and the 
use of non-ionizing ultrasonography [24]. Unfortu-
nately, all these procedures require significant chair 
side time, while some involve invasive procedures that 
significantly increase patients’ discomfort [22]. Previ-
ously, researchers and clinicians attempted to assess 
the gingival thickness from clinically well-adapted 
intraoral scan and cone beam computed tomography 
(CBCT) images [25]. In this strategy, an STL file from 
the intraoral scan is manually superimposed onto the 
corresponding CBCT-based digital imaging and com-
munications in machine (DICOM) file to assess the 
gingival thickness [25]. However, non-invasive meas-
urement of the soft tissue thickness requires an accu-
rate reconstruction of the teeth and bones underneath 
the soft tissues. Thus, the manual superimposition 
procedure requires tremendous human resources and 
training, markedly reducing its feasibility in clinics. 
More importantly, since the traditional CBCT post-
processing methods rarely distinguish the boundary 
between hard and soft tissues accurately, the interclass 
correlation between the gingival thicknesses measured 
by the endodontic spreader and those obtained via the 
digital evaluation was only 0.79–0.87 [25].

Given the requirement for further improving the 
accuracy and reproducibility of the digital meas-
urement of gingival thickness and to reduce human 
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workload, we propose a novel, non-invasive method 
to assess soft tissue thickness by establishing an AI 
segmentation workflow for soft tissue thickness meas-
urement using CBCT and intraoral scans. As a proof-
of-concept study, the off-the-shelf deep-learning model 
is first recruited to segment teeth and bone from 
CBCT images of Yorkshire pig mandibles, which is 
then superimposed onto the intraoral scan of the pig 
semi-automatically. To evaluate the accuracy of this 
methodology, the gingival thickness obtained from the 
AI virtual measurements will be compared with those 
assessed by horizontal transmucosal bone sounding, 
the current clinical best practice [26]. Our hypoth-
esis of the current study is that the trained AI models 
utilized in the current work are mature enough to be 
applied across subjects without retraining; in addition, 
a good agreement can be achieved between virtual and 
clinical measurements of soft tissue thickness.

Materials and methods
Study design
Swine is one of the major animal species used in dental 
and medical research because they share similar ana-
tomic and physiologic characteristics with humans [27]. 
Particularly, Yorkshire pig heads were selected in this 
study due to their similar bone density, gingival thick-
ness, and head size compared to humans [27]. CBCT and 
intraoral scan images were obtained under routine clini-
cal settings. As the control method, the horizontal trans-
mucosal bone sounding with a periodontal probe was 
used to measure the mandibular gingival thickness. Then, 
the digital models were processed using artificial intelli-
gence (AI) platforms to accurately distinguish soft tissue 
from embedded hard tissue and ensure the virtual probes 
assessed the same locations as the clinical measurement. 
Finally, the gingival thicknesses quantified virtually and 
clinically were compared statistically to determine the 
validity of the novel proposed method in this study.

Sample selection
In this study, only discarded Yorkshire pig heads were 
collected from research labs at the University of Penn-
sylvania. Thus, the Penn Institutional Animal Care & Use 
Committee (IACUC) Office of Animal Welfare deter-
mined that a specific IACUC approval is unnecessary. 
Based on the inclusive and exclusive criteria listed below, 
a total of seven Yorkshire pig heads were used as study 
samples, including four sexually matured pigs (weight 
30  kg, around 6–7  months old) and three pre-pubertal 
pigs (weight 10  kg, approximately 1–2  months old) [27, 
28] to represent different age groups of patients in ortho-
dontic clinics.

Inclusion criteria:

(1) posterior teeth were present at the mandible bilat-
erally;

(2) intact mandible;
(3) no gross gingival tissue defect.

Exclusion criteria:

(1) significant deformation of the hard or soft tissue in 
the mandible;

(2) any intraoral hard or soft tissue lesion.

Data collection
The Yorkshire pig head was fixed on the headrest frame 
of a Planmeca  ProMax® 3D machine (PLANMECA 
USA INC, IL, USA) by a 3D-printed frame (Fig.  1A) to 
maintain its position during the CBCT scanning. CBCT 
scanning was carried out at 90 kVp and 14 mAs with a 
voxel size of 0.2 mm. Then, an 80 mm × 80 mm × 80 mm 
region of interest (ROI) containing the mandible was 
extracted as a DICOM file (Fig. 1B).

After CBCT imaging, the mandible of the Yorkshire 
pig head was dissected. An iTero intraoral scanner 
 (Element®2, AZ, USA) was used to capture images of the 
teeth and gingival tissue of the mandibular arch (Fig. 1C). 
The image was then saved in STL format (Fig. 1D).

Next, the buccal and lingual gingival thicknesses were 
assessed at 3  mm apical to the zenith of the mid-facial 
and mid-lingual gingival margin at an angle perpen-
dicular to the long axis of the posterior teeth. Briefly, a 
UNC 15 probe (HuFriedy Group, IL, USA) was inserted 
perpendicularly to the long axis of the axial root plane 
(Fig. 1E). When tactile resistance was encountered, indi-
cating full-thickness penetration of the gingival tissue, 
the rubber stopper was passively positioned over the gin-
gival surface. The resultant distance between the tip of 
the periodontal probe and the internal border of the rub-
ber stopper was measured using a digital caliper (Fig. 1F).

Image processing
A commercially available, well-developed software 
platform, Dragonfly AI suite (Version 2021.1; Object 
Research Systems, Montréal, Canada), was used for 
virtual bone and teeth segmentation. This platform 
was chosen because Dragonfly’s Deep Learning solu-
tion bundles with pre-built and pre-trained neural net-
works, implementing powerful solutions, such as U-Net 
[29], and its bone analysis module has been used to 
achieve animal and human bone segmentation quickly, 
accurately, and confidently [30]. In the current study, 
for bone segmentation, bone was manually marked on 
five axial-sliced images from a single sexually matured 
pig to span the length of the bone in the mandibular 
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region, while seven axial-sliced images from the same 
pig were labeled for teeth segmentation (Fig. 1G). The 
settings were settled per Dragonfly’s recommendations 

based on similar segmentation tasks [31]. Particularly, 
a semantic segmentation Deep Learning model was 
employed with the setting of patch size: 32, stride ratio: 

Fig. 1 The flowchart of data collection and imaging processing of the current study. A, B CBCT scans of the pig head. The red arrow points to 
the 3D‑printed frame, which was used to maintain the pig head position while taking the CBCT scans. C, D Intraoral scans of the pig mandibular 
arch. E, F Transgingival probing of the mandibular posterior teeth. G–J The AI models training process in the Dragonfly AI suite. K Superposition of 
the intraoral scans and the AI‑reconstructed 3D models was performed using CloudCompare. L, M After alignment, the soft tissue thickness was 
measured in AutoDesk Meshmixer



Page 5 of 11Yang et al. Progress in Orthodontics           (2023) 24:14  

0.25, initial filter count: 64, Deep Learning layers num-
ber: 4, batch size: 32, epochs number: 100, loss func-
tion: OrsDiceLoss, optimization algorithm: Adadelta, 
and parameters count: 5,440,418. Both U-Net [32] 
models [teeth (Fig.  1H) and bone (Fig.  1I)] achieved a 
training score above 0.99, indicating convergence of 
the model parameters against the training inputs [31] 
and suggesting no further refinement is needed. Next, 
all slices containing teeth and bone images were used 
in the validation process, in which the output images 
of the AI models were visually assessed by overlaying 
the outputs against the original CBCT images. Then, 
the two successfully trained AI models were universally 
applied to all CBCT data sets obtained in this study for 
reconstructing 3D models that distinguished teeth and 
bones (Fig.  1J). These AI-segmented 3D models were 
exported from Dragonfly as.stl files, respectively.

Superposition of the intraoral scans and the AI-seg-
mented 3D models was performed using CloudCom-
pare [33] semi-automatically. Firstly, the intraoral scans 
and the AI-reconstructed 3D models were aligned by 
selected reference points to allow automatic alignment. 
Then, the alignment is fine-tuned manually until total 
visual overlap is achieved (Fig. 1K). Finally, the soft tis-
sue thickness was measured in a 3D visualization envi-
ronment, AutoDesk Meshmixer (CA, USA) (Fig.  1L). 
Here, the intraoral scans were sectioned at the loca-
tions where gingival thicknesses were clinically probed 
to expose the soft tissue (Additional file 1: Video 1). A 
virtual probe was then used to measure the soft tissue 
thickness consistent with the manual probe measure-
ment locations (Fig. 1M).

Statistical analysis
The previous study suggested that at least 34 measure-
ments per clinical assessment are necessary to detect 
a clinically significant difference between virtual and 
clinical soft tissue thickness measurements [25]. There-
fore, 56 sites for buccal measurements and 52 sites for 
lingual measurements were conducted in the current 
study. Among these 108 investigated sites, 43 sites were 
from pre-perpetual pigs and 65 sites were from sexually 
matured pigs.

Statistical analyses were performed with GraphPad 
Prism (version 8.2.1, San Diego, CA, USA). As the Sha-
piro–Wilk normality test revealed that not all data fol-
lowed a normal distribution, data are presented as raw 
data overlapped with quartiles. At the same time, the 
mean values were also provided. The data obtained 
from virtual and clinical measurements were compared 
by Wilcoxon matched-pairs signed-rank analysis, while 
their correlation was determined by Pearson’s r value. For 
intergroup comparisons of the amount of difference, the 
Mann–Whitney U test was used. P < 0.05 was considered 
a statistically significant difference.

Results
When comparing the virtual and clinical measure-
ments for all the probing sites, a correlation Pearson r 
value of 0.9656 (with a 95% confidence interval from 
0.9500 to 0.9764) was achieved (Fig.  2A). The differ-
ence between the virtual and clinical measurements 
was 0.066 ± 0.223  mm (median 0.040  mm, range 
from − 0.580 to 0.600  mm, P = 0.0021), with 65.74% 

Fig. 2 The difference between virtual and clinical probing results for all tested sites. A The correlation and regression results of virtual and clinical 
measurements. B The exact difference in the probing depth between virtual and clinical measurements. N = 108. Green dotted lines: the levels 
of − 0.20 mm and 0.20 mm; yellow dash‑dotted lines: the levels of − 0.50 mm and 0.50 mm; black dashed lines: the levels of − 0.60 mm and 
0.60 mm. The box plot represents the 5th percentile, 25th percentile, median (50th percentile, solid red line), 75th percentile, 95th percentile, and 
mean (black cross), respectively
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of the sites having a difference within ± 0.2  mm and 
95.37% of the sites having a difference within ± 0.5 mm 
(Fig. 2B).

Since the AI models were trained with the CBCT 
images from a sexually matured pig and applied to the 
samples from both sexually matured and pre-pubertal 
groups, a comparison between the two groups was 
conducted. As shown in Fig.  3, the correlation Pear-
son r value between virtual and clinical measure-
ments on sexually matured samples was 0.9615 (with 
a 95% confidence interval from 0.9375 to 0.9764) 
(Fig.  3A). The difference between the virtual and 
clinical measurements on the sexually matured sam-
ples is 0.087 ± 0.240  mm (median 0.060  mm, range 
from − 0.580 to 0.590 mm, P = 0.0025), while 58.46% of 
the sites had a difference within ± 0.2  mm and 93.85% 
of the sites had a difference within ± 0.5 mm (Fig. 3B). 
For the pre-pubertal samples, the correlation Pearson 
r value between virtual and clinical measurements was 
0.9726 (with a 95% confidence interval from 0.9496 to 
0.9851) (Fig.  3C). The difference between the virtual 
and clinical measurements on the pre-pubertal sam-
ples was 0.033 ± 0.195  mm (median 0.020  mm, range 
from − 0.490 to 0.600  mm, P = 0.4183), with 76.74% 
of the sites having a difference within ± 0.2  mm and 
97.67% of the sites having a difference within ± 0.5 mm 
(Fig.  3D). Moreover, no statistically significant differ-
ence was found between the sexually matured and pre-
pubertal groups regarding the discrepancy between the 
virtual and clinical measurements (Fig. 3E).

Because the previous study showed differences in vir-
tual probing accuracy between buccal and lingual prob-
ing sites [25], buccal and lingual probing results were also 
compared in the current study. The correlation Pearson 
r value between virtual and clinical measurements at the 
buccal sites was 0.9490 (with a 95% confidence interval 
from 0.9141 to 0.9699) (Fig. 4A). The difference between 
the virtual and clinical measurements of buccal sites is 
0.019 ± 0.223 mm (median 0.020 mm, range from − 0.580 
to 0.600 mm, P = 0.5787), with 73.21% of the sites having 
a difference within ± 0.2 mm and 94.64% of the sites hav-
ing a difference within ± 0.5 mm (Fig. 4B). Meanwhile, for 
the lingual sites, the correlation Pearson r value between 
virtual and clinical measurements was 0.9768 (with a 95% 
confidence interval from 0.9597 to 0.9867) (Fig. 4C). The 
difference between the virtual and clinical measurements 
of lingual sites was 0.116 ± 0.215 mm (median 0.090 mm, 
range from − 0.520 to 0.570 mm, P = 0.002), with 57.69% 
of the sites having difference within ± 0.2 mm and 96.15% 
of the sites having difference within ± 0.5 mm (Fig. 4D). 
A statistically significant difference was detected between 
the buccal and lingual sites regarding the discrepancy 
between the virtual and clinical measurements (Fig. 4E).

Discussion
In 2015, Ronneberger et  al. presented a Convolutional 
Neural Network (CNN) named U-Net for medical image 
segmentation [32]. The proposed architecture utilizes 
data augmentation to drastically reduce the number of 
manually marked input training images, thus reduc-
ing the time and cost of model training [32]. Since then, 
the U-Net architecture has also been applied to dental 
CBCT datasets with promising results. Compared to 
the standard threshold-setting method for hard tissue 
reconstruction, recent development in AI image seg-
mentation promises to reconstruct the teeth and bones 
from CBCT images with higher accuracy and less human 
intervention. For instance, Lee et al. reported validation 
and test precision of over 90% using a modified version 
of the U-Net architecture [34]. However, to the best of 
our knowledge, the current study is the first to develop 
an AI-based method to measure gingival thickness by 
the digital superimposition of STL and DICOM files and 
evaluate its reliability and reproducibility.

As mentioned above, all the soft tissue thickness values 
measured by the virtual method show excellent agree-
ment with the clinical method. In addition, the Pearson 
r values in the current study are higher than those docu-
mented in the previous studies [25, 35]. Notably, more 
than 95% of the probing sites have a difference within 
0.5 mm (the minimal clinically significant difference [25, 
35]) between virtual and clinical measurements, high-
lighting the reliability of this AI-based virtual measure-
ment in precision imaging analysis.

The excellent correlation between virtual and man-
ual measurements also supports the applicability of the 
U-Net algorithm for dental CBCT image segmentation. 
It is worth noting that even a small number of training 
images (as used in the current study) can build up mod-
els capable of accurate segmentation for the entire CBCT 
dataset. In the current study, despite the different denti-
tion intraorally and the different number of tooth buds 
in the alveolar bone [36], teeth and alveolar bone seg-
mentations can be achieved in the images of both sexu-
ally matured and pre-pubertal pigs with the Dragonfly’s 
Deep Learning solution which bundles with pre-built and 
pre-trained neural networks. These data suggest that the 
proposed methodology has the potential to be universally 
applied to the samples with different types of dentitions 
without affecting the accuracy.

Excitingly, our study showed that the current method 
resulted in an excellent correlation between virtual and 
manual measurements in both buccal and lingual sites, 
which is different from the previous study when an AI 
procedure was not utilized [25]. When comparing the 
exact difference in probing depth, buccal sites have bet-
ter accuracy than the lingual sites (0.019 ± 0.223  mm 
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Fig. 3 The difference between virtual and clinical probing results of sexually matured samples versus pre‑pubertal samples. A The correlation 
and regression results of virtual and clinical measurements on sexually matured samples. B The exact difference in probing depth between 
virtual and clinical measurements on sexually matured samples. C The correlation and regression results of virtual and clinical measurements 
on pre‑pubertal samples. D The exact difference of the probing depth between virtual and clinical methods on measurements on pre‑pubertal 
samples. E The comparison between sexually matured samples and pre‑pubertal samples for the exact difference of the probing depth between 
virtual and clinical measurements. The Mann–Whitney U test was used. N = 65 for sexually matured samples, N = 43 for pre‑pubertal samples. Green 
dotted lines: the levels of − 0.20 mm and 0.20 mm; yellow dash‑dotted lines: the levels of − 0.50 mm and 0.50 mm; black dashed lines: the levels 
of − 0.60 mm and 0.60 mm. The box plot represents the 5th percentile, 25th percentile, median (50th percentile, solid red line), 75th percentile, 95th 
percentile, and mean (black cross), respectively
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Fig. 4 The difference between virtual and clinical probing results of buccal and lingual sides. A The correlation and regression results of virtual 
and clinical measurements of buccal probing sites. B The exact difference in probing depth between virtual and clinical measurements of buccal 
probing sites. C The correlation and regression results of virtual and clinical measurements of lingual probing sites. D The exact difference of the 
probing depth between virtual and clinical measurements of lingual probing sites. E The comparison between buccal and lingual sites for the exact 
difference in the probing depth between virtual and clinical measurements. The Mann–Whitney U test was used. N = 56 for buccal sites, N = 52 for 
lingual sites. Green dotted lines: the levels of − 0.20 mm and 0.20 mm; yellow dash‑dotted lines: the levels of − 0.50 mm and 0.50 mm; black dashed 
lines: the levels of − 0.60 mm and 0.60 mm. The box plot represents the 5th percentile, 25th percentile, median (50th percentile, solid red line), 75th 
percentile, 95th percentile, and mean (black cross), respectively
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vs. 0.116 ± 0.215  mm). Still, the discrepancy between 
the virtual and clinical measurements on both sides is 
much smaller in the current study than previous study 
(0.08 mm for buccal sites and 0.25 mm for lingual sites) 
[25].

Limitation of our method
Despite the high accuracy of the current protocol, it must 
be mentioned that the current methodology is estab-
lished on the swine model. Furthermore, as the dental 
arch of the miniature pig is longer than that of a human 
[27], the iTero scanner could not generate a whole arch 
scan file. Thus, the intraoral scan images of the partial 
arch were used in the current study. In addition, only the 
mandibular arch was tested in the current study.

It is worth noting that genomic diversity and a variety 
of pathological conditions and treatments, such as large 
restoration, periapical lesions, and root canal treatment, 
will significantly increase the difficulty and complexity 
of AI-based segmentation in human patients. Moreover, 
the heterogeneity of machinery and technical settings 
of image collections should also be seriously considered 
when refining the AI models to achieve a broadly appli-
cable, clinically meaningful algorithm for bone and teeth 
segmentation. Thus, a more rigorous model training/
refining approach with large feeding data from multiple 
centers would be required to validate the accuracy of the 
model in clinical applications. No doubt, further stud-
ies are necessary to apply and verify this work in human 
images with both maxillary and mandibular full arch 
scans with a wide, preferred international collaboration 
among craniofacial, orthodontic, and periodontal health 
providers and imaging and data experts.

In addition, as a proof-of-concept study of the AI algo-
rithm for soft tissue thickness assessment, the current 
workflow still requires human inputs for CBCT data nor-
malization and alignment between CBCT and intraoral 
scan data. Although the current feasibility study showed 
promising results, an automated CBCT preprocessing 
protocol, such as the one described by Lee [34], could 
be developed. Furthermore, automated mesh alignment 
tools could be developed to align the AI-reconstructed 
bone-and-teeth model to the intraoral scan model. Lastly, 
a feature recognition tool should be developed to auto-
matically probe the soft tissue thicknesses at prescribed 
locations.

Conclusion
In summary, the methodology proposed in this work 
provides an innovative, AI-based technique for a non-
invasive and accurate measurement of soft tissue thick-
ness using clinical routine 3D imaging systems. This 

method holds great potential in aiding clinicians in 
generating a more comprehensive diagnosis and, in 
turn, optimizing treatment plans with more predict-
able outcomes in multiple aspects of periodontics and 
orthodontics. In addition, the availability of soft-tissue 
thicknesses via non-invasive methods would also allow 
clinicians to present the current periodontal soft tis-
sue conditions to patients in a concise yet quantitative 
manner, such that patients’ expectations regarding the 
predicted surgical or orthodontic treatment outcomes 
can be better managed.
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