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Abstract
Backgrounds and objectives The present study was designed to define a novel algorithm capable of predicting 
female adolescents’ cervical vertebrae maturation stage with high recall and accuracy.

Methods A total of 560 female cephalograms were collected, and cephalograms with unclear vertebral shapes and 
deformed scales were removed. 480 films from female adolescents (mean age: 11.5 years; age range: 6–19 years) were 
used for the model development phase, and 80 subjects were randomly and stratified allocated to the validation 
cohort to further assess the model’s performance. Derived significant predictive parameters from 15 anatomic points 
and 25 quantitative parameters of the second to fourth cervical vertebrae (C2-C4) to establish the ordinary logistic 
regression model. Evaluation metrics including precision, recall, and F1 score are employed to assess the efficacy of 
the models in each identified cervical vertebrae maturation stage (iCS). In cases of confusion and mispredictions, the 
model underwent modification to improve consistency.

Results Four significant parameters, including chronological age, the ratio of D3 to AH3 (D3:AH3), anterosuperior 
angle of C4 (@4), and distance between C3lp and C4up (C3lp-C4up) were administered into the ordinary regression 
model. The primary predicting model that implements the novel algorithm was built and the performance evaluation 
with all stages of 93.96% for accuracy, 93.98% for precision, 93.98% for recall, and 93.95% for F1-score were obtained. 
Despite the hybrid logistic-based model achieving high accuracy, the unsatisfactory performance of stage estimation 
was noticed for iCS3 in the primary cohort (89.17%) and validation cohort (85.00%). Through bivariate logistic 
regression analysis, the posterior height of C4 (PH4) was further selected in the iCS3 to establish a corrected model, 
thus the evaluation metrics were upgraded to 95.83% and 90.00%, respectively.

Conclusions An unbiased and objective assessment of the cervical vertebrae maturation (CVM) method can 
function as a decision-support tool, assisting in the evaluation of the optimal timing for treatment in growing adults. 
Our novel proposed logistic model yielded individual formulas for each specific CVM stage and attained exceptional 
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Background
Each individual has a unique growth pattern, which is 
constituted of certain periods of growth accelerations and 
decelerations. The onset and duration of the mentioned 
period vary between skeletal classes, adding complex-
ity to the orthodontic intervention. By initiating treat-
ment at the patient’s optimal skeletal maturational stage, 
a favorable outcome with minimum risk of unwanted 
effects is expected [1]. The pubertal growth spurt can be 
determined by chronological age and secondary sexual 
maturation as well as mandibular growth, weight and 
height, menarche and voice changes, and cervical verte-
bral maturation (CVM) [2–5].

The CVM method, based on the morphology of three 
cervical vertebrae, is a common approach to predict-
ing the timing of pubertal growth, as well as estimat-
ing growth velocity and the proportion of growth [6, 7]. 
Early in 1972, Lamparski published an atlas to display 
changes in cervical vertebrae for evaluating individual 
skeletal maturation and concluded that the CVM method 
is a valid indicator for the assessment of skeletal matu-
rity and is comparable with hand-wrist radiographs, 
with the additional benefit of avoiding additional radia-
tion exposure [8]. Baccetti et al. further implemented a 
modification of the CVM method to make it clearer, eas-
ier, and more applicable to the majority of patients, that 
is, a more limited number of vertebral bodies and more 
accurate definitions of stages to avoid the comparative 
assessment of between-stage variations [9]. The newly 
proposed CVM method consisted of six maturational 
stages with comparable high reliability and validity in the 
clinical assessment of skeletal maturity. Nevertheless, the 
available literature regarding the reproducibility of this 
staging method is controversial, with intra-observer and 
inter-observer correlations ranging from perfect to poor 
agreement [10, 11]. Reasons for the poor reliability have 
been attributed to the level of training, clinician experi-
ence, and evaluation metrics based on simple qualitative 
analysis of the vertebral shape and size.

In the pursuit of precise and objective predictions, sev-
eral mathematical models were developed, as manual 
assessment of the shape of cervical vertebrae has been 
criticized for its tediousness and variabilities. Previ-
ous proposed regression-based attempts were based 
on the linear form [12, 13]; however, the methodology 
was limited to a collection with most of the CVM fea-
tures, lacking the capability to precisely detect the exact 
maturational stage. Santiago et al. highlighted that the 
methodological deficiencies in the analysis of skeletal 

maturation did not involve any form of randomization, 
blinding, or sample size calculation [14]. The previously 
proposed formulae are demonstrated to vary with poly-
morphism and sexual dimorphism and display several 
algorithmic errors, which limit their clinical predictive 
use of the CVM staging method [15, 16]. Recent advances 
have seen intelligent machine learning algorithms emerge 
to assist in medical diagnosis, thus selecting the right 
technique is crucial, considering the anticipated outcome 
or prediction [17]. The aim of the present study, there-
fore, is to establish and validate a formula in adolescent 
female groups to facilitate the applicability of the CVM 
method to determine the skeletal age. Furthermore, cor-
relation analysis, widely employed in previous studies, 
is not sufficient to reliably assess the diagnostic perfor-
mance for the identification of the maturation phase in 
individual subjects [18]. Thus, a dedicated analysis of 
model performance is needed, which encompasses ade-
quate accuracy, reproducibility, and correlation analy-
sis, as well as appropriate sensitivity-specificity analysis 
[19]. The CVM method we utilized is based on Baccet-
ti’s method [20, 21] and comprised of four maturational 
stages (iCS1 through iCS4, instead of Stage 1 through 
Stage 6 in the former CVM method), with the peak in 
mandibular growth occurring between iCS2 and iCS3. 
Thus, the assessment of the CVM stage through the com-
parative analysis of between-stage changes should be 
avoided, which improves the accuracy and repeatability. 
In our context, we evaluated the proposed estimation 
model of the CVM stage grounded on the standard with 
accuracy and confusion matrix analysis, thus indicating 
the appropriate and ideal stages for clinical interventions.

Materials and methods
Study design and patient selection
The present retrospective study was designed to derive 
an algorithm to determine cervical vertebral bone age 
for female adolescents of ethics in the southern and 
southeast parts of China. The input data for develop-
ing algorithms were chronological age and the mor-
phological dimensions of the cervical vertebrae from 
lateral cephalograms. The output was the accuracy of 
the logistic model for predicting the maturation stages. 
The flow diagram of patient selection and study design is 
shown in Fig. 1. All procedures performed were follow-
ing the ethical standards of the Clinical Research Ethics 
Committee of Chongqing Medical University (Approval 
No.2022-070); consent waived as there was no interven-
tion; data analyzed in an anonymous form. A total of 560 

performance, indicating the capability to function as a benchmark for maturity evaluation in clinical craniofacial 
orthopedics for Chinese female adolescents.
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sets of existing pretreatment cephalograms taken from 
July 2022 to Aug 2023 were recruited (mean age: 11.5 
years; age range: 6–19 years). Patients with no congenital 
or acquired malformation of the cervical vertebrae and 
cephalograms of sufficient quality were included. Those 
with evidence of gross skeletal asymmetries or bone dis-
ease were excluded from the study. Patients were seated 
and positioned in the natural head posture during imag-
ing. Cephalograms were obtained from patients using 
the KODAK DirectView DR9000 with standard radio-
graphic exposure procedures, employing specific param-
eters: 80 kV voltage, 10 mA current, and 0.5 s exposure 
time. All personal information, except age and sex, was 
removed from the data.

Skeletal maturation assessment and data acquisition
Skeletal maturation entails alterations in the size of ver-
tebral bodies and the shape of the upper and lower bor-
ders of C2, C3, and C4 vertebrae. These changes have 
been categorized into six stages, which correlate with 
morphological modifications of the vertebral shapes and 
estimated time lapse from the mandibular growth peak. 
To streamline and enhance the applicability of our newly 

proposed method, each stage was easily identified in the 
process of model development.

iCS1 = before mandibular growth peak.
iCS2 = during the year of the mandibular growth peak.
iCS3 = 1 or 2 years after mandibular growth peak.
iCS4 = after the end of mandibular growth peak.
Briefly, stages 1–2 were classified as iCS 1 (prepuberty); 

stage 3 was classified as iCS 2 (pubertal peak); stage 4 was 
classified as iCS 3 (pubertal slowdown); stages 5–6 were 
classified as iCS 4 (post-puberty). In the event of misclas-
sification, where the features of two consecutive stages 
were present in a single image, the intermediate or in-
between stages were included in the more mature stage. 
Two experienced orthodontists with 5 years of clinical 
practice simultaneously evaluated the CVM stage for 
each cephalogram strictly following the descriptions of 
Baccetti [9]. The ground-truth iCS stage was determined 
as frequently chosen by the experts. Any disagreement 
was resolved by inter-examiner discussion or consulting 
a third orthodontist with 20 years of experience (detailed 
in Table 1; Fig. 2).

A total of 560 films of four CVM stages (iCS1, iCS2, 
iCS3, iCS4) were obtained, detailed demographic dis-
tribution was illustrated in Table  2. The images were 

Table 1 Cervical vertebral morphologic features of each maturation stage and classification in our proposed method
CVM stage Inferior border’ shape Morphology Clinical implication Classification

C2 C3 C4 C3 C4
Stage 1 F F F T T Prepuberty iCS 1
Stage 2 C F F T T iCS 1
Stage 3 C C F T T, RH Pubertal peak iCS 2
Stage 4 C C C RH RH Pubertal slowdown iCS 3
Stage 5 C C C RH, S RH, S Post-puberty iCS 4

iCS 4Stage 6 C C C RH, RV RH, RV
C: concavity; F: flat; T: trapezoid; RH: rhomboid horizontal; S: square; RV: rhomboid vertical

Fig. 1 Overview of the progress in primary model development for CVM stage estimation. 480 films from female adolescents were randomly selected for 
the model development phase, and 80 subjects were then allocated to the validation cohort to further evaluate the model’s performance. After evaluat-
ing the performance of primary models corresponding to each stage, we identified misclassified stages when the observed percentage fell below our 
decision threshold (90.00%)
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randomly apportioned into two separate groups, one 
for model development (primary cohort, n = 480) and 
the other serving for further testing (validation cohort, 
n = 80). All cephalograms were imported and resized to 
actual size in ImageJ, with anatomical contours marked 
on each sample, and the resulting coordinates were then 
copied into Excel for calculation (Fig.  3). The following 
parameters were measured for each case: anterior, mid-
dle, and posterior vertebral body heights and the antero-
posterior body length (Table 3). The anterosuperior angle 
of C2, C3, and C4 was assessed, as formed with p or lp 
serving as the vertex. The ratios of these parameters, as 
defined in Table 3, were calculated.

Model development
The estimated model based on CVM methods was devel-
oped in the primary cohort (n = 480). The remaining 80 

cephalometric images were used as the validation data-
set to further evaluate the performance of the ordinary 
logistic regression model. As the dependent variable 
was ordinal in our study, the ordinal logistic regression, 
underlying strict proportional odds assumption, was 
utilized to build the primary estimated model. Before 
selecting CVM features, all features were standardized 
with Z-score normalization. All variables with statistical 
significance (P < 0.05) selected by univariate analysis were 
taken as candidates for further logistic regression analy-
ses. The proportional odds assumption was tested using 
the Brant test, and the variance inflation factor (VIF) 
was used to measure the severity of multicollinearity in 
regression analysis. By eliminating non-correlated vari-
ables, variables with appropriate correlations were identi-
fied, and their functional relationships were extracted to 
establish the iCS stages.

Table 2 Demographic distribution of 560 lateral cephalograms in primary cohort and validation cohort
Characteristic Primary cohort (n = 480) Validation cohort(n = 80)
Age range iCS1 iCS2 iCS3 iCS4 iCS1 iCS2 iCS3 iCS4
Min 6.0 7.9 9.9 11.8 7.0 7.2 10.0 12.3
Max 12.2 14.6 17.0 19.0 10.8 13.4 15.4 18.0
Average
age

7.6 ± 0.8 10.5 ± 1.1 12.3 ± 1.1 15.7 ± 1.3 7.9 ± 0.4 9.8 ± 1.8 11.3 ± 1.4 15.1 ± 1.8

Number 120 120 120 120 20 20 20 20

Fig. 2 Cervical vertebral maturation staging system. (A) Stage 1 (initiation): vertebrae are wedge-shaped and inferior borders of bodies of the second 
(C2), third (C3), and fourth (C4) cervical vertebrae are flat; (B) Stage 2 (acceleration): concavities develop on the inferior borders of C2 and C3; bodies of C3 
and C4 are nearly rectangular, but the inferior border of C4 is still flat; (C) Stage 3 (transition): clear concavities develop on inferior borders of C2 and C3; 
(D) Stage 4 (deceleration): distinct concavities are seen on inferior borders of C2, C3, and C4 and bodies of all cervical vertebrae are rectangular; (E) Stage 5 
(maturation): vertebral bodies of C3 and C4 are nearly square and spaces between vertebral bodies are reduced. (F) Stage 6 (completion): vertebral bodies 
of C3 and C4 are more vertical than horizontal
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The constructed logistic regression model yielded 
individual formulas for each vertebral stage, posing the 
advantage of determining probabilities (Eq. (1)). P (y = j|x) 
represents the expected probability of each maturational 

stage in the iCS index (j = 1,2,3,4), whereas αj  denotes 
the coefficient value as the log-odds, β (x)indicates the 
constant slope coefficient, and e is referred to as Euler’s 
number.

 logitPj = αj + βxj  (1)

Equation  (2) assisted us in determining the linear func-
tion of the independent variables.

 
P (y = j|x) =

1
1 + e−αj+β(x) − 1

1 + e−αj−1+β(x)  (2)

Performance evaluation
Model performance in regard to precision, recall, F1 
score, and accuracy was determined based on the pri-
mary cohort, supplemented by additional compara-
tive evaluation on the validation dataset. The following 
index was calculated and recorded based on the confu-
sion matrices: true positive, true negative false positive, 
and false negative. True positive (TP) refers to correctly 
classified positive instances, while true negative (TN) 
denotes correctly classified negative instances. False posi-
tive (FP) represents instances that were incorrectly classi-
fied as positive, and false negative (FN) refers to instances 
that were incorrectly classified as negative.

The following metrics were utilized to evaluate the per-
formance of the proposed algorithm:

Table 3 Measuring lines and ratios used in the cephalometric 
analysis
Parameter Description
D2 Vertical distance of C2d to the connec-

tion of C2a and C2p
D3/4 Vertical distance of C3/4um to the con-

nection of C3/4la and C3/4lp
AH3/4 Vertical distance of C3/4ua to the con-

nection of C3/4la and C3/4lp
PH3/4 Vertical distance of C3/4up to the con-

nection of C3/4la and C3/4lp
UW3/4 Vertical distance of C3/4ua to the con-

nection of C3/4up and C3/4lp
LW3/4 Vertical distance of C3/4la to the con-

nection of C3/4up and C3/4lp
D3/4: AH3/4 Ratio of D3/4 to AH3/4
PH3/4: UW3/4 Ratio of PH3/4 to UW3/4
PH3/4: LW3/4 Ratio of PH3/4 to LW3/4
@2 Antero-superior angle of C2d–C2p con-

nection to C2p–C2a connection
@3–4 Antero-superior angle of C3/4d–C3/4lp 

connection to C3/4lp–C3/4la connection
C2a-C3ua Distance between C2a and C3ua
C2p-C3up Distance between C2p and C3up
C3la-C4ua Distance between C3la and C4ua
C3lp-C4up Distance between C3lp and C4up

Fig. 3 Morphometric assessment of C2, C3, and C4 based on the follow-
ing landmarks. d, the most superior point of the lower border of the verte-
brate’s body; a/la and p/lp, the most anterior and posterior points on the 
lower border of the vertebrate’s body; ua and up, the most superior points 
of the anterior and posterior borders of the vertebrate’s body; um, the 
middle of the upper border of the body. Detailed measuring parameters 
used in the cephalometric analysis are illustrated in Table 3
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Precision is the fraction of positive predictions that 
belong to the positive class.

 
Precision =

TP

TP + FP
 (3)

Recall is the fraction of positive examples in the dataset 
that are predicted as positive.

 
Recall =

TP

TP + FN
 (4)

F1 Score is the harmonic mean of precision and recall.

 
F1 score = 2 × Precision × Recall

Precision + Recall
 (5)

Accuracy is the fraction of the total correct predictions.

 
Accuracy =

TP + TN

TP + TN + FP + FN
 (6)

Statistical analysis
All statistical analyses were performed using the IBM 
SPSS Statistics, v. 23.0 (Armonk, New York), with a 
P value equal to 0.05 as a significant difference. The 
Shapiro-Wilk test was utilized to check the normality of 
distribution for quantitative data. Spearman’s correla-
tion analysis was used to assess the correlation between 
the selected quantitative CVM variables and the CVM 
stages. A non-parametric test was employed to evaluate 
the ordinal categorical variables. To identify the signifi-
cant predictors of the CVM stage, treated as the depen-
dent variable, multivariable ordinal logistic regression 
was employed. A parallelism test was performed to check 
the consistency of independent variables in ordinary 
logistic regression across different CVM stages. The vari-
ance inflation factor (VIF) was observed to control the 
severity of multicollinearity. The confusion matrices that 
summarize the predicted situation with the actual situa-
tion were used to evaluate model performance.

Results
Characteristics of the CVM feature
The distribution of the cervical vertebrae maturation 
stage determined by the researchers’ visual analysis is 
shown in Table  2. The calculated mean and standard 
deviation (SD) of each parameter are presented in 
Table  4. Spearman’s rank correlation coefficient analysis 
in the primary cohort exhibited 25 parameters signifi-
cantly correlated by considering the CVM stage as the 
dependent variable and the measured parameters as the 
independent variables (p < 0.01).

Quantitative CVM feature selection and model 
construction
The primary development of the predicting model was 
carried out using chronological age and CVM features 
as input data. As the dependent variable was ordinal in 
our study, the ordinal logistic regression underlying the 
strict proportional odds assumption was used in the 
primary cohort (n = 480). The multiple ordinal logistic 
regression analysis showed that significantly correlated 
parameters with the cervical vertebral maturational stage 
were narrowed down to chronological age, D3:AH3, @4, 
and C3lp-C4up for predicting the CVM stage (P < 0.05). 
The proportional odds assumption has not been violated, 
and there were no significant multicollinearity issues 
existed among the selected features in the primary cohort 
(VIF < 5; tolerance > 2). The coefficient B exhibited in 
Table 5 represents β . Followed by calculating each stage 
probability through the equation series, the estimated Pj 
value designated the current CVM stage for each individ-
ual. The primary model for the prediction of each stage 
was determined as Eq. (4).

Table 4 Descriptive statistics and correlational analysis results of 
the 25 variables
Parameter Average

(X ± SD)
Correlation coefficient P value

Ages (year) 11.50 ± 3.16 0.939** <0.01
D2 (mm) 1.17 ± 0.77 0.801** <0.01
D3 (mm) 1.07 ± 0.80 0.879** <0.01
AH3 (mm) 8.52 ± 2.76 0.913** <0.01
PH3 (mm) 10.17 ± 2.24 0.811** <0.01
UW3 (mm) 11.39 ± 1.35 0.441** <0.01
LW3 (mm) 12.27 ± 1.38 0.395** <0.01
D3:AH3 0.11 ± 0.06 0.746** <0.01
PH3:UW3 0.89 ± 0.17 0.661** <0.01
PH3:LW3 0.83 ± 0.17 0.681** <0.01
D4 (mm) 0.86 ± 0.77 0.855** <0.01
AH4 (mm) 8.29 ± 2.60 0.902** <0.01
PH4 (mm) 10.22 ± 2.21 0.804** <0.01
UW4 (mm) 11.56 ± 1.50 0.485** <0.01
LW4 (mm) 12.33 ± 1.47 0.442** <0.01
D4:AH4 0.09 ± 0.07 0.779** <0.01
PH4:UW4 0.88 ± 0.16 0.613** <0.01
PH4:LW4 0.83 ± 0.16 0.645** <0.01
@2 (°) 11.41 ± 7.40 0.758** <0.01
@3 (°) 9.98 ± 7.34 0.852** <0.01
@4 (°) 7.74 ± 6.89 0.843** <0.01
C2a-C3ua (mm) 5.47 ± 1.39 -0.626** <0.01
C2p-C3up (mm) 3.77 ± 1.17 -0.260** <0.01
C3la-C4ua (mm) 5.54 ± 1.33 -0.670** <0.01
C3lp-C4up (mm) 3.62 ± 1.08 -0.086** <0.01
**Significantly correlated parameters based on P < 0.01
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βxj = 3.172 × chronologicalage + 28.642×
D3 : AH3 + 0.727 × @4 + 0.453 × C3lp − C4up (7) Accuracy for stage determination

The confusion matrices exhibited a diagonal pattern for 
prediction, which considers each CVM stage (Fig.  4). 
The accuracy of the primary cohort in total CVM stage 

Table 5 Multivariate associations determined by ordinal logistic regression
B SE (B) Wald statistic Sig* 95% CI

Lower Upper
Threshold [iCS = 1] 32.921 3.452 90.955 0.000 26.156 39.687

[iCS = 2] 45.460 4.758 91.279 0.000 36.134 54.786
[iCS = 3] 62.065 6.491 91.430 0.000 49.343 74.787

Location Ages 3.172 0.336 88.960 0.000 2.513 3.831
D3:AH3 28.642 5.084 31.743 0.000 18.678 38.606
@4 0.727 0.094 59.270 0.000 0.542 0.912
C3lp-C4up 0.453 0.203 4.999 0.025 0.056 0.850

B: Standardized regression coefficient, SE: Standard error, *Significant predictors based on P < 0.05

Fig. 5 Performance of the primary model using accurate stage estimates

 

Fig. 4 Confusion matrices display the outcomes of primary model performance within the primary cohort (A), following fine-tuning on the validation 
cohort (B)
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estimating was 93.96%. To validate the diagnostic value of 
the predictive regression model, we applied a validation 
data set, and the accuracy was determined to be 92.50%. 
As displayed in Fig.  5, the initial performance assess-
ment yielded a satisfactory estimation percentage from 
the corresponding CVM stages in the primary cohort 
and validation cohort. However, the iCS3 estimate was 
89.17% and 85.00%, which failed to meet the estimation 
threshold we set (90.00%). The F1 score for performance 
evaluation was determined as Eq.  (5), which results in 
values ranging between 0 and 1, indicative of each stage 
probability. Comparing the F1 values of the four periods 
of iCS, we conclude that the discrimination ability of the 
primary model for each CVM stage is from highest to 
lowest: iCS1 > iCS4 > iCS2 > iCS3 (Fig.  6; Table  6). Upon 
thorough inspection, the primary algorithm of CVM 

mapping attains satisfaction but still needs additional 
adjustments to improve the performance of iCS3.

Logistic model optimization
Adjusted logistic models were constructed for precisely 
distinguishing the 3rd stages and improving consistency 
based on the measurements from 120 subjects in each of 
the iCS3 and iCS4. As displayed in Table 7, chronologi-
cal age, @4, and PH4 exhibited statistically significant 
correlations (P < 0.05) and were employed to generate 
the newly adjusted logistic regression equations based on 
Eq. (8).

 
βxj = 2.139 × chronologicalage+
0.313 × @4 + 1.444 × PH4

 (8)

Table 6 Precision, recall rates, and F1 score of the primary iCS assessment model on the primary and validation cohort for each iCS 
subgroup

Primary cohort Validation cohort
Precision Recall F1 score Precision Recall F1 score

iCS1 0.9917 1 0.9958 1 1 1
iCS2 0.9310 0.9000 0.9152 0.9474 0.9000 0.9231
iCS3 0.8770 0.8917 0.8843 0.8500 0.8500 0.8500
iCS4 0.9587 0.9667 0.9627 0.9048 0.9500 0.9268
Precision, recall rates, and F1 score are calculated with the confusion matrix in Fig. 4

Table 7 Multivariate associations determined by modified logistic regression of iCS3 and iCS4
B SE (B) Wald statistic Sig* 95% CI

Lower Upper
Threshold [iCS = 3] 51.828 10.143 26.109 0.000 31.948 71.708
Location Ages 2.139 0.396 29.183 0.000 1.363 2.914

@4 0.313 0.096 10.657 0.001 0.125 0.501
PH4 1.444 0.448 10.408 0.001 0.567 2.321

B: Standardized regression coefficient, SE: Standard error, *Significant predictors based on P < 0.05

Fig. 6 F1 score shows the results of the primary validation and accuracy test in the primary cohort (A) and the validation cohort (B). The calculated F1 
score of each stage was shown above the line
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Subsequently, the accuracy of the finally modified sys-
tem was obtained using the confusion matrices in two 
datasets (detailed in Fig. 7A, B, and Table 8). Of the sum-
marized evaluation methods, the optimized algorithm 
exhibited the overall best performance in the primary 
and validation cohorts with F1 scores of 0.9705 and 
0.9456, respectively (Fig. 7C, D). As illustrated in Fig. 8, 
an increase in the percentage level of stage estimation 

accuracy was observed in the performance of adjusted 
models at iCS3 of the primary cohort (95.83%) and the 
validation cohort (90.00%), thus indicating the optimized 
model exhibits a substantial performance enhancement.

Table 8 Precision, recall rates, and F1 score of the modified model on the primary and validation cohort for iCS3 and iCS4
Primary cohort Validation cohort
Precision Recall F1 score Precision Recall F1 score

iCS3 0.9829 0.9583 0.9705 0.9474 0.9000 0.9456
iCS4 0.9594 0.9833 0.9712 0.9048 0.9500 0.9268

Fig. 7 Confusion matrices and F1 score of the optimized model. (A) Confusion matrices depict the performance of the optimized model in the primary 
cohort. (B) F1 score corresponding to the optimized model in the primary cohort. The optimized model’s performance is further illustrated in the valida-
tion cohort through confusion matrices (C) and F1 score (D). The calculated F1 score of iCS3 and iCS4 in two datasets was shown above the line
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Discussion
Evaluation of skeletal maturation is of paramount sig-
nificance in orthodontic treatment planning and the 
eventual outcome [22]. Emerging advances in biomath-
ematical modeling on clinical orthodontics motivated us 
to design multiple ordinal logistic algorithms to objec-
tively score an individual’s cervical stage. In this context, 
we generated threshold-based ordinal regression models 
based on anatomic points derived from cephalograms, 
for detecting and classifying CVM stages, achieving 
the estimated percentage of 95.83% and 96.64% in two 
datasets.

The ordinal regression-based method from views of the 
description degree and the predictive consistency were 
obtained in our study, thus facilitating the prevalence in 
orthodontic prognosis. Cervical vertebral growth pro-
ceeds from the upper to the lower cervical vertebrae, 
potentially leading to statistical multicollinearity issues 
with these parameters. However, our presented ordi-
nary logistic model successfully determined the skeletal 
maturation level with the absence of multicollinearity 
problems by accessing the CVM features from C3 and 
C4 (D3:AH3, @4, and C3lp-C4up). Objective methods of 
evaluation were constructed using regression formulae 
based on ratios of measurements in the third and fourth 
cervical vertebral bodies. In accordance with Santiago et 
al. work, the logistic model that integrated the parame-
ters of C2, C3, and C4 demonstrated remarkable predic-
tive accuracy albeit a small sample size [23]. However, the 
challenge lay in accurately assessing the convexity of the 
iCS3 and iCS4, potentially resulting in low reproducibil-
ity [24]. Upon model evaluation, the third stage (iCS3) 
was moderately difficult to predict accurately, being mis-
interpreted alongside the adjacent one, prompting us to 
engage in model optimization. The underlying reason 

could be that iCS3 is the transition stage from the per-
petual peak period to the deceleration period, of which 
the age range is relatively concentrated and occurs in a 
short period. Furthermore, the morphological similari-
ties of the bodies of the C3 and C4 and their analogous 
changeover from rectangular to square form might have 
projected an indistinctive amount of growth and ulti-
mately confusion in the final model performance in iCS3 
estimation, which failed to provide a vertical rectangular 
shape in the later stages of growth on average [25]. Fol-
lowing that, by further screening and discovering a new 
significant parameter (PH4) influencing the perpetual 
stage (iCS3), the accuracy of our proposed model was 
enhanced to 95.83% and 96.64% in two datasets.

Females are more advanced than males in skeletal 
maturation. The growth spurt of female adolescents com-
menced four months earlier and extended for an addi-
tional four months compared to males [26]. A disparity 
between chronological age and skeletal maturity arises, 
particularly among females, at puberty initiation owing 
to the secretion of gonadotropin-releasing (GnRH) and 
sex hormones [27]. In the present study, gender and 
chronological age were incorporated into the final model. 
Owing to the existing disparities between females and 
males during the skeletal maturation, the samples were 
not grouped by gender, thereby enhancing the robust-
ness of the model [28]. Besides, it has been reported 
that assessing an individual’s CVM stage with standards 
from different racial groups may lead to overestimation 
or underestimation of the degree of maturation. Thus, 
considering gender and ethnic influences on skeletal 
maturity, our study exclusively features cephalograms on 
female adolescents of ethics in the southern and south-
east parts of China, which brings new sights into the 
CVM prediction model.

Fig. 8 Comparison of model performance of iCS3 in the optimized model of the primary and validation cohort. The estimated stage percentages in the 
primary and optimized models were displayed above the bar
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Recent progress in artificial intelligence (AI) has 
empowered the execution of tasks such as recognition, 
segmenting, and classifying in cephalometric radio-
graph analysis, with the benefit of minimizing interob-
server differences [29, 30]. AI-assisted algorithms can 
perform feature extraction in an automated manner, 
which allows clinicians to extract confused features with 
minimal domain knowledge and effort [31]. Kök H et al. 
trained the artificial neural networks (ANN) model with 
300 individuals aged between 8 and 17 years and pro-
posed the ANN algorithm was stable in determining the 
CVM classes with a 2.17 average rank [32]. With ongoing 
improvements in AI, Atici SF et al. proposed an innova-
tive deep-learning model with parallel architecture and 
achieved a validation accuracy of 82.35% in CVM stage 
classification on female subjects [33]. However, applying 
deep learning algorithms to medical image analysis pres-
ents several unique challenges and obstacles, such as the 
issues of imbalanced data, deficiency in the confidence 
interval, and lack of properly labeled data [34, 35]. Due 
to the complex data structures, AI-aided model training 
is an extremely expensive endeavor and requires a high 
computational load, while the medical imaging datasets 
are too limited when compared to those for general com-
puter vision issues [36]. Besides, deep learning-driven 
methods failed to mark the actual significant parameters 
in analyzing films or find the specific drawback area [37, 
38]. Another major obstacle to utilizing AI could be the 
legal ramifications of black-box that physicians build 
trust and acceptance of something that they may not fully 
understand, which needs further consideration in clini-
cal application [39]. However, the formula we proposed 
for each CVM stage simplifies the calculation process for 
limited indices while maintaining the essence and high 
accuracy (> 90%) of the estimation, making it suitable for 
application in clinical practice.

As stated by Houston et al., the use of individual ossi-
fication events is of limited use during pubertal growth-
spurt prediction [40]. To date, the primary challenge 
remains in crafting a resilient, versatile, and sensitive 
diagnostic tool for clinical practice, with a focus on non-
invasive methods for assessing skeletal maturity [41]. 
Established based on significant CVM features, our 
proposed algorithms could indicate the specific stages 
directly; thus, the workload of clinicians will be reduced 
and more objective and consistent evaluation outcomes 
will be materialized.

The limitation of our study may reside in the patient 
selection bias stemming from the inherent nature of the 
retrospective design. However, we tried to intensify the 
significance and validity of our results by reaching the 
required sample population during the model devel-
opment process. The model in our study still warrants 
further validation and cross-checking, particularly for 

expanding the testing dataset and objective assessment of 
skeletal age through artificial intelligence. Additionally, to 
obtain more reliable outcomes, further longitudinal stud-
ies are needed to track individual changes over time.

Conclusion
The current study provides the following information:

1) Based on the proportional odds assumption, we 
develop an ordinal regression model for stage 
determination to achieve an accurate assessment and 
guarantee the supervision of prediction consistency 
based on the CVM method.

2) Confusion matrices evaluation of our models 
demonstrated adequate prediction percentage 
and commendable recall rate for each stage, thus 
indicating the appropriate and ideal time for clinical 
interventions of Chinese female adolescents.
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