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Abstract
Background The biological mechanisms driving orthodontic tooth movement (OTM) remain incompletely 
understood. Gingival crevicular fluid (GCF) is an important indicator of the periodontal bioprocess, providing valuable 
cues for probing the molecular mechanisms of OTM.

Methods A rigorous review of the clinical studies over the past decade was conducted after registering the protocol 
with PROSPERO and adhering to inclusion criteria comprising human subjects, specified force magnitudes and force 
application modes. The thorough screening investigated differentially expressed proteins (DEPs) in GCF associated 
with OTM. Protein-protein interaction (PPI) analysis was carried out using the STRING database, followed by further 
refinement through Cytoscape to isolate top hub proteins.

Results A comprehensive summarization of the OTM-related GCF studies was conducted, followed by an in-depth 
exploration of biomarkers within the GCF. We identified 13 DEPs, including ALP, IL-1β, IL-6, Leptin, MMP-1, MMP-3, 
MMP-8, MMP-9, PGE2, TGF-β1, TNF-α, OPG, RANKL. Bioinformatic analysis spotlighted the top 10 hub proteins and their 
interactions involved in OTM. Based on these findings, we have proposed a hypothetic diagram for the time-course 
bioprocess in OTM, which involves three phases containing sequential cellular and molecular components and their 
interplay network.

Conclusions This work has further improved our understanding to the bioprocess of OTM, suggesting biomarkers 
as potential modulating targets to enhance OTM, mitigate adverse effects and support real-time monitoring and 
personalized orthodontic cycles.
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Introduction
Orthodontic treatment aims to move misaligned teeth 
into proper place by stimulating alveolar bone resorption 
and formation with orthodontic force. The biomechani-
cal and molecular principle underpinning orthodontic 
tooth movement (OTM) is associated with expression 
of numerous regulatory molecules and critical to initiate 
the process of bone remodeling, leading to effective tooth 
movement. Understanding to the biomechanism in OTM 
is of great importance, since it may help improve the 
treatment efficiency and reduce the adverse side effects.

Periodontal ligament (PDL) plays a pivotal role in OTM 
[1]. Numerous animal studies [2–4] have investigated the 
molecular alterations in PDL in various OTM models. 
In clinical studies, immunostaining of the PDL is unap-
plicable; occasionally, premolars were stressed with rub-
ber band [2] or buccolingually moved [5] followed by 
extraction of the teeth and harvest of the PDL for molec-
ular assay. Nevertheless, such approaches may not rep-
resent the typical forms of OTM and could only observe 
responses at the initial OTM stage.

On the other hand, gingival crevicular fluid (GCF) 
serves as an effective indicator to monitor the time-
course molecular expressions in periodontium. GCF is 
relatively independent and identifies specific biomarkers 
associated with several biological events with reasonable 
sensitivity [6–9]. Due to its similarity to serum, fluctua-
tions in certain components of GCF may be utilized for 
the diagnosis or assessment of systemic diseases. Addi-
tionally, as GCF is derived from interstitial fluids within 
periodontal tissues, it holds promise as an oral biologi-
cal fluid for detecting periodontal diseases like gingivitis 
[10, 11], periodontitis [12], caries [13], and external root 
resorption [14].

Originating from the microvascular system, GCF pri-
marily comprises serum-borne molecular mediators, 
establishing itself as a suitable index for assessing activi-
ties during OTM [15]. This particular biofluid not only 
mirrors individual periodontal reactions to orthodontic 
forces, but also serves as an important measure for evalu-
ating individual pubertal growth peak for growing sub-
jects [16]. Owing to its non-invasive extraction and the 
practicality of consistent sampling from identical sites, 
mapping GCF biomarkers offers a substantial advantage 
for routine surveillance in OTM. This approach harbors 
the potential to catalyze the development of a predictive, 
preventive, and highly personalized paradigm in orth-
odontic care.

Data serve as a crucial asset for contemporary soci-
eties, poised to elevate healthcare’s quality, accessibil-
ity, cost-effectiveness, safety, and fairness. The realm of 
dental care and research is evolving into an era defined 
as data dentistry [17, 18]. The concept of “data dentistry” 
encapsulates the integration of Big Data and advanced 

data analytics, including artificial intelligence (AI) and 
machine learning, into dental, oral, and craniofacial 
(DOC) health care and research. This integration aims 
to deepen our understanding of patient health and dis-
ease, leading to more effective, efficient, and safer care. 
Bioinformatics is the research of biological abstracting 
in the context of macromolecules, as well as the use of 
informatics to organize the evidence acquired from these 
molecules and comprehend the derivations on a broader 
scale for use in multiple aspects of biology [19]. In the 
field of orthodontics, bioinformatics has tremendous 
potential to generate new perspectives between basic 
research and medical or dental applied sciences. How-
ever, current bioinformatics studies have predominantly 
focused on in vitro analyses [2, 20–22], with a significant 
emphasis on periodontal ligament cells (PDLCs). These 
studies aim to elucidate the gene regulatory mechanisms 
and pathway modifications implicated in OTM, yet they 
often yield evidence of a comparatively lower tier. Con-
versely, in vivo research has largely relied on animal mod-
els [23], such as rats and mice, highlighting a notable 
deficiency in studies utilizing human samples. A limited 
number of investigations have applied high-throughput 
sequencing to premolars extracted after the application 
of orthodontic force [2, 24], aiming to dissect the molec-
ular underpinnings of OTM. However, these studies are 
generally constrained to examining OTM alterations at a 
singular time point due to sample limitations. Address-
ing this gap, this present study capitalizes on the bene-
fits of GCF sampling. This approach enables a thorough 
investigation of OTM dynamics across multiple time 
points, amalgamating existing GCF-based OTM research 
with bioinformatics analysis. This strategy facilitates a 
dynamic landscape of the molecular evolution through-
out the OTM process, aiming to deepen the understand-
ing and offer novel insights into the biomechanisms of 
OTM.

Methods
Information sources
A critical review of the literature was undertaken fol-
lowing the registration of the protocol with PROSPERO 
(CRD42024529068). To identify all relevant studies, a 
systematic search was conducted across the following 
four databases: MEDLINE (via PubMed), Embase, Ovid, 
and Web of Science. Additionally, a supplemental manual 
search of the reference lists from related articles was per-
formed, the details of which are provided in Supplemen-
tary Fig. 1. All searches were conducted in August 2023, 
and the year of publication was restricted as from 2013 
to 2023.

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=529068
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Eligibility criteria
The inclusion criteria used in this review were as follows: 
articles that related to all the items we listed in the review, 
including all the human GCF studies, that reported the 
orthodontic force magnitudes and tooth movement pat-
terns, published within the last decade (from January 
2013 to August 2023).

Search strategy
The search strategy included three keywords: “orthodon-
tic”, “gingival crevicular fluid” and “tooth movement”. The 
keyword “orthodontic” was expanded to “orthodontics” 
and “orthodontically”, and the abbreviation “OTM” and 
“GCF” were also concerned. The search strategy was as 
follows: (OTM[Title/Abstract] OR ((tooth movement 
[Title/Abstract]) AND ((GCF [Title/Abstract]) OR (gin-
gival crevicular fluid [Title/Abstract])) AND (((orthodon-
tic [Title/Abstract]) OR (orthodontics [Title/Abstract])) 
OR (orthodontically [Title/Abstract]))), which was devel-
oped for MEDLINE and adapted for the other databases.

QUADAS assessment
The QUADAS (Quality Assessment of Diagnostic Accu-
racy Studies)-2 tool was used to evaluate risk of bias 
(ROB) for each study. It was performed independently by 
two researchers and in discrepancy, consensus by refer-
ring to a third evaluator (Supplementary Table 2). Within 
this analysis, the applicability of two studies was classi-
fied as unclear. Of the 17 studies examined, 12 exhibited 
both a low ROB and high applicability. The remaining five 
studies presented an unclear ROB, yet maintained high 
applicability.

Protein interaction network and hub-proteins prediction
Protein-protein interaction and co-expression networks 
for the encoding of mutual target proteins were evaluated 
using the STRING database (https://string-db.org). The 
Top 10 key nodes and sub-networks in the given network 
were filtered out and ranked by topological algorithm of 
degree with the CytoHubba application installed in the 
Cytoscape software (version 3.9.1) [25].

Results
Study selection
The initial literature search yielded 495 papers, from 
which the duplicates were removed, leaving 261 articles 
for further evaluation. Among these, 27 studies were ani-
mal study and 156 studies were considered irrelevant to 
topic and excluded from the analysis. After a thorough 
assessment of the full texts of the remaining articles, 
33 studies were excluded for not meeting the predeter-
mined eligibility criteria, 11 studies were eliminated 
due to unavailability of full-text, Subsequently, 34 stud-
ies remained (Supplementary Table 1). According to the 

canine distalization and orthodontic force of 150  g, the 
review finally included 17 studies (Table  1), and expla-
nations for the exclusion of studies are available in the 
Supplementary Fig.  1. Two reviewers (Y.C. and YR.Q.) 
screened the titles and abstracts of the identified stud-
ies independently. Consensus was obtained by discussion 
and consultation with a third reviewer (L.M.) to resolve 
any disagreements during study selection and data 
extraction.

Dynamics of molecules in GCF
The results of the studies are tabulated and presented in 
Table 1. While Table 2 provides an overview of the sam-
pling times (highlighted in “S”), trends in concentration 
changes, and the peaks of the 13 DEPs as observed in 
various studies.

Study characteristics
All 17 studies conducted were longitudinal in design, fea-
turing sample collection at multiple time points. Baseline 
levels of all cytokines were used as internal controls for 
comparison. Each of these studies followed a standard-
ized protocol for canine retraction, involving premolar 
extraction and the application of a 150  g orthodontic 
force. Importantly, all studies focused on analyzing mod-
ulators in gingival crevicular fluid (GCF).

Changing patterns of molecules
The expression profile of molecules in GCF showed vari-
ations at different observation times. Based on the above 
summarization about potential biomarkers, all proteins 
with statistically significant changes in expression levels 
compared to control groups during the OTM process are 
regarded as DEPs. We consistently identified 13 DEPs, 
including ALP, IL-1β, IL-6, Leptin, MMP-1, MMP-3, 
MMP-8, MMP-9, PGE2, TGF-β1, TNF-α, OPG, RANKL, 
listing in Fig.  1. Specifically, ALP (ALPL), IL-1β (IL1B), 
IL6, MMP1, MMP3, MMP8, MMP9, PGE2 (PTGES), 
TGF-β (TGFB1), and TNF-α (TNF) exhibited an upreg-
ulated trend in GCF during OTM. Conversely, OPG 
(TNFRSF11B) showed a downregulated trend during this 
process. Additionally, Leptin (LEP) displayed a biphasic 
fluctuation in GCF concentration during OTM [26, 27], 
potentially influenced by a range of factors including the 
applied force, duration of treatment, and individual vari-
ables such as obesity [28].

Interregulatory network prediction
Clinical orthodontics, being a complex biochemical phe-
nomenon, involves various cytokines that interact to 
form a sophisticated network. This network regulates 
both hard tissue and soft tissue remodeling, presenting 
a challenge in summarization and interpretation. Conse-
quently, we utilized bioinformatics as an effective tool to 

https://string-db.org
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more comprehensively illustrate the intricate interactions 
among these 13 key hub-proteins.

PPI, as deciphered from the STRING database, revealed 
52 notable interactions that serve as a foundation for 
understanding underlying mechanisms and identify-
ing hub proteins. In Fig.  1, the node diameter indicates 
the number of interacting protein nodes. Node colors 
represent the protein’s concentration trend in GCF dur-
ing the OTM process, with red signifying upregulation, 
blue indicating downregulation and yellow represent-
ing biphasic regulation. Furthermore, the edge thickness 
between nodes denotes the data’s reliability; a thicker 
line implies a more dependable and stronger interac-
tion. Hub proteins defined with elevated connectivity are 
of particular significance. Their high connectivity scores 
underscore their importance. CytoHubba identified the 
top 10 nodes ranked by degree as hub proteins, specified 
as TNFSF11 (RANKL), TNF (TNF-α), IL6, IL1B (IL-1β), 
MMP9, MMP3, TGFB1 (TGF-β1), MMP8, LEP (Leptin), 
MMP1. The interactions and the ranking of these key 
protein nodes are depicted in Fig. 2, where a darker color 
indicates a protein’s greater importance within the inter-
action network.

Discussion
Latest potential biomarkers of OTM in GCF
Under the influence of orthodontic forces, PDL under-
goes continuous physiological renewal. Although numer-
ous in vivo and in vitro studies have explored the changes 
in various molecules during tooth movement, the results 
of all these studies exhibit significant discrepancies. 
Therefore, we have compiled a comprehensive summary 
of human GCF studies that explicitly indicate force mag-
nitudes and tooth movement patterns from researches 
published in the last decade. This summary, presented in 
Supplementary Table 1, evaluates the variations and peak 
detections of all significant biomarkers in GCF during 
OTM. The table encompasses various parameters, includ-
ing the number of participants, age groups, orthodontic 
force magnitudes, methods of force application, sampling 
time points, as well as trends and peak concentrations of 
potential biomarkers. This might enable a clearer under-
standing of the roles that different molecules play during 
this force-related periodontal bioprocess.

Evaluating specific biomarkers in a time-dependent 
manner
The cytokine network plays a crucial role in the metabolic 
transition of bone remodeling. This includes the promo-
tion of proinflammatory cells by cytokines, the modula-
tion of osteoblast proliferation and differentiation by 
growth factors, and the regulation of osteoclasts by bone 
resorption-promoting factors. Reflecting on the main 
functions and concentration changes of each regulatory N
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factor in GCF-based clinical studies, we categorized the 
OTM process into three phases. Integrating this frame-
work with the temporal changes of mediators observed in 
the OTM process, along with the results from the above 
PPI analysis, enables us to construct a GCF-based time 
course landscape of OTM.

Phase 1: 0 ∼ 24 h
When subjected to continuous orthodontic force, the 
teeth cause bending and deformation of the alveolar bone 
under stress, leading to the drainage of periodontal tis-
sue fluid and initiating the early stages of tooth tipping 
within the bony socket [29]. This mechanotransduction 
process modifies the periodontal microenvironment 
through changes in oxygen pressure and metabolic sig-
nals, sparking a cascade of cellular and molecular activi-
ties crucial for orthodontic tooth movement. During this 
initial phase, there is a significant synthesis and secre-
tion of various proinflammatory enzymes, cytokines, and 
chemokines.

The primary response to mechanical stress is the secre-
tion of tumor necrosis factor-alpha (TNF-α), reach-
ing its maximal levels one hour after force application 
[30]. Whereas, another randomized controlled trial, 
constrained by sampling time points (limited to day 1 

Table 2 Timeline summary
Mediators Timeline Sampling (Time points)

< 1d 1d 2d 3d 7d 14d 21d 28d > 28d
IL-1β ↑ S S S 0, 1, 7, 14, 21 days

S ↑ S S 1 h, 1 day, 7 days, 30 days, 60 days
↑ S 0, 7, 28 days
↑ S S S 0, 7, 14, 21, 28 days

S S S ↑ 0, 3, 7, 28, 56 days
IL-6 ↑ S 0, 1 h, 28 days

↑ 0, 1, 2, 3, 4 months
TNF-a ↑ S 0, 1 h, 28 days

S ↑ 0, 1 day, 28 days
PGE2 ↑ S S 0, 1, 2, 7 days
Leptin ↑ S 6 h, 21 days

S S ↓ 0, 1, 7, 21 days
MMP-1 S ↑ S S S -7 days, 0, 1 h, 1 day, 7 days, 14 days, 21 days
MMP-3 S ↑ S S S -7 days, 0, 1 h, 1 day, 7 days, 14 days, 21 days
MMP-8 ↑ S 0, 7, 28 days
MMP-9 ↑ S 0, 14, 90 days
RANKL ↑ S S 0, 2, 7, 30, 45 days

↑ S 0, 7, 28 days
OPG S ↓ S 0, 2, 7, 30, 45 days

↓ S 0, 7, 28 days
S S S ↓ 0, 7, 14, 21, 28 days

TGF-β S ↑ S S 0, 1, 7, 14, 21 days
ALP S ↑ S 0, 7, 14, 21 days

S ↑ S 0, 7, 14, 28 days
S S S S ↓ 0, 1, 7, 14, 21, 28 days

(“S” signifies sampling time points, arrows denote the trends and peak locations of observed changes.)

Fig. 1 Potential inter-relationship among DEPs from the STRING database: 
(1) Node color is correlated with the concentration changes of the protein 
during the OTM process, blue (decrease), red (increase), biphasic (yellow). 
(2) Node size is positively correlated with the number of protein nodes in-
teracting with it. (3) Edge thickness between nodes is positively correlated 
with the strength of the interaction between the two proteins
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and day 28), indicated a rise in TNF-α levels by the lat-
ter date [31]. Previous study has reported that TNF-α 
stimulation promotes bone resorption and inhibit bone 
formation, making it a significant indicator of osteo-
clast activity [32]. Upon binding to its receptor, TNF-α 
induces RANK expression in osteoclast precursors [33], 
and triggers induction of the Wnt signaling inhibitor 
Dkk1 in the osteoblasts at the mRNA and protein levels, 
with a simultaneous increase in the receptor activator of 
NF-κB ligand (RANKL) [34]. Furthermore, it enhances 
the expression of sclerostin [35], which coincides with 
the upregulation of RANKL [36], thereby further pro-
moting osteoclastogenesis during OTM. Prostaglandin 
E2 (PGE2), another critical mediator of inflammation, 
significantly amplifies the inflammatory response. It pro-
motes the secretion and synthesis of interleukins, peak-
ing in concentration within 24 h [37]. Previous research 
has identified a relationship between these two media-
tors: TNF-α can increase RANKL expression through 
PGE2-induced activation of NFATc1 [38], which is in 
accordance with the trend of above GCF-based clini-
cal results. Both submucosal and intraligamentous PGE2 
administration significantly enhanced the rate of tooth 
movement and bone metabolism [39], indicating a poten-
tial therapeutic usage of PGE2 in accelerating OTM 

process. As pain is among the most cited negative effects 
of orthodontic treatment, a human study confirmed that 
acetaminophen showed no significant effect on PGE2 
synthesis and may be the safe choice compared to ibu-
profen for relieving pain associated with OTM [37].

Whilst, interleukins are activated, being essential in 
recruiting neutrophils, leukocytes, and other inflamma-
tory mediators. Previous findings have shown that IL-1β 
is released within the first hour immediately follow-
ing the application of orthodontic force, and reaches its 
peak within 24  h [40–42]. In a split-mouth clinical trial 
of Low-Level Laser Therapy (LLLT), IL-1β in the control 
side peaked at day 56, possibly due to the relative impact 
of therapeutic interventions applied on the experimen-
tal counterpart [43]. In response to mechanical stress, 
IL-1β enhances bone resorption by activating osteoclasts 
and attracting leukocytes and other inflammatory agents 
that contribute to bone remodeling [44]. As one of the 
most abundant inflammatory mediators, IL-1β increased 
MMP-1 synthesis and MMP-2 gene expression and 
decreased TIMP-1 gene expression in the presence of 
in vitro cyclic low-magnitude orthodontic tensile forces 
[45]. IL-6, featured as one of the top 10 DEPs, serves as 
a multidirectional cytokine and a key regulator of bone 
resorption. The concentration of IL-6 in GCF shows an 

Fig. 2 Top 10 key nodes and sub-networks ranked by topological algorithm of degree
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increase within one hour post-application of stress and 
peaks at 24  h [30, 46]. In another clinical study with a 
broader sampling timeframe (monthly collections over 
a continuous four-month period), it was observed that 
IL-6 concentrations peaked in the first month of orth-
odontic therapy, implicating a critical role for IL-6 in 
the early stage of orthodontic treatment processes [47]. 
Earlier research has proposed that IL-6 can amplify the 
effects of IL-1β and TNF-α, enhancing their biological 
impacts and promoting osteoclastogenesis [48]. After 
orthodontic intervention, IL-6 signal was activated and 
found to increase the number of osteoclasts by suppress-
ing apoptosis and increasing their responsiveness to mac-
rophage colony-stimulating factor (M-CSF) and RANKL 
[49]. Another research conducted that IL-6 increased 
osteocyte-mediated osteoclastic differentiation by acti-
vating RANKL and JAK2 [50]. IL-6 activates STAT3 via 
glycoprotein 130 (gp130) [51] to stimulate osteoclast 
progenitors proliferation, leading to bone resorption and 
in concert with other bone-resorbing agents at the early 
stage of OTM [52, 53]. Synthesizing the conclusions of 
the aforementioned studies, it becomes evident and clear 
that the IL-6/GP130/JAK2/STAT3 signaling axis is fun-
damentally significant during the first phase, leading to 
the initiation of upcoming tooth movement progression.

Our findings from the initial phase of tooth move-
ment (1 month of tooth alignment) corroborate those of 
other studies [54, 55]. Building upon the above discussed 
potential mechanisms, this phase is characterized by the 
synthesis of proinflammatory cytokines and osteoclast 
differentiation-inducing molecules at the level of secreted 
proteins, setting the stage for the tooth movement pro-
cess to transition to the subsequent phase.

Phase 2: 24 h ∼ 7d
In this stage of tooth movement, the primary focus is on 
the remodeling of the periodontal ligament (PDL). The 
PDL is a unique connective tissue comprising a heterog-
enous cell population (PDLCs) and a fibrous extracellular 
matrix (ECM) [56]. Under the influence of orthodontic 
forces, PDL cells secrete matrix proteins that contrib-
ute to ECM deposition. Concurrently, ECM degrada-
tion occurs through the expression of various proteolytic 
enzymes, including matrix metalloproteinases (MMPs) 
and their specific inhibitors, the tissue inhibitors of 
metalloproteinases (TIMPs), function in a coordinated 
manner to regulate the remodeling of periodontal tissue 
[57].

Under a specific orthodontic load of 150 g, the concen-
trations of various subtypes of MMPs undergo distinct 
changes. MMP-1 (collagenase) and MMP-3 (stromelysin) 
are observed to increase significantly on the first day of 
OTM [58]. MMP-8, another collagenase, is elevated to its 
highest concentration on day 7 [59]. Meanwhile, MMP-9, 

functioning as a gelatinase, shows its concentration 
peak on day 14. However, this observed peak is actually 
constrained by the limited sampling time points in the 
study’s GCF collection, which were only on day 0, day 14, 
and day 90 [60]. Therefore, it exhibits a relatively slower 
rise compared to other MMPs. Other studies with differ-
ent force values have shown a significant increase in its 
concentration at earlier day 7 [61, 62].

In vitro experiments show that IL-1β significantly 
boosts MMP-1 production in human Periodontal Liga-
ment Mesenchymal Stem Cells (hPDL-MSCs) in a time-
dependent manner [45]. Mechanical force is capable 
of stimulating MMP-3 expression, potentially via the 
p38 MAPK pathway, with the most pronounced signal-
ing observed at 24  h. This mechanical responsiveness 
within MMP-3 promoter regions has been noted in both 
human and animal models, as shown in both in vitro and 
in vivo studies [63]. In human PDL cells, MMP3 expres-
sion is enhanced by IL-6 upregulated through cyclic ten-
sile force, contributing to the maintenance of periodontal 
homeostasis [64]. When cultured PDL cells are exposed 
to TNF-α and analyzed with an MMP antibody array, 
MMP-3 is identified as the most significantly upregu-
lated protein [65]. TNF-α also enhances MMP-9 expres-
sion mediated through the NF-κB element in MMP-9 
promoter, leading to the release of soluble intercellular 
adhesion molecule-1 [66]. Moreover, a significant cor-
relation is observed between Lipocalin-2/matrix metal-
loproteinase 9 (MMP9/NGAL) and Thrombospondin-1 
(TSP1), indicating their heightened involvement in the 
angiogenesis within the PDL during orthodontic peri-
odontal remodeling [67]. The loss of TIMP activates the 
Metalloproteinase-TNFα-DKK1 axis, undermining Wnt 
signaling and leading to a reduction in bone mass [34].

Through MMP activity, osteoid can be degraded by 
osteoblasts so that the differentiated osteoclasts could 
attach to the bone surface before the actual bone resorp-
tion. Classical bone remodeling markers like RANKL 
exhibit fluctuations in this phase. A randomized clini-
cal trial indicates that the upregulation of RANKL and 
downregulation of OPG both peak on day 7 [68]. Based 
on other established clinical GCF results, the concentra-
tion of RANKL is also significantly upregulated during 
this phase [69, 70].

The elevation of RANKL facilitates its binding to 
RANK on the surface of osteoclasts precursors (OCPs), 
which in turn promotes the differentiation of OCPs into 
osteoclasts. This differentiation leads to enhanced bone 
resorption activity under the influence of osteoclasts.

Leptin, known to orchestrate the host’s response to 
inflammatory and infectious stimuli, has been shown to 
undergo a biphasic change in GCF levels during OTM, 
underscoring its substantial link with the rate of tooth 
movement. Alaguselvaraj et al. reported an elevation in 
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GCF leptin concentrations shortly after the application of 
orthodontic force [26]. Nonetheless, the temporal reso-
lution of their observations, confined to only 6 h and 21 
days post-application, which does not comprehensively 
delineate the dynamic timeline of leptin concentration 
changes. Contrastingly, an in vivo clinical investigation 
with an expanded array of sampling intervals revealed 
a marked decline in leptin concentrations, plummeting 
from baseline values to 21 days (P = 0.0001) during the 
process of canine retraction [27]. In other leptin-related 
investigations, where specific force magnitudes were not 
specified, leptin concentrations initially increased within 
the first 24 h, followed by a decline and then a rise to lev-
els proximate to baseline [71, 72]. This biphasic change 
pattern intimates a robust association between fluctua-
tions in leptin concentration and the dynamics of tooth 
movement.

Leptin assumes a multifaceted role in the dynamics of 
OTM, mediating its effects through an array of cellular 
and molecular interactions. It provokes the secretion 
of pro-inflammatory cytokines IL-6 and IL-8 in human 
periodontal ligament cells (hPDLCs) via binding to the 
obesity-related leptin and leptin receptor b (OBRb), 
thereby triggering subsequent intracellular signaling 
cascades [73]. Moreover, leptin markedly attenuates the 
levels of growth factors (TGFβ1, VEGFA), transcription 
factors (RUNX2), matrix molecules (collagen, periostin), 
while concurrently suppressing SMAD signaling path-
ways during regenerative processes [74]. Intriguingly, 
administration of leptin, either in vivo and in vitro, inhib-
its the expression of RANKL. This suppression extends to 
the mechanical force-induced up-regulation of RANKL 
in hPDLCs, which was rescued by LepR siRNA transfec-
tion [75]. Furthermore, leptin exacerbates the response 
of cementoblasts to compressive forces, escalating PGE2 
secretion and apoptotic activity, and thus, increased lev-
els of leptin may influence the inflammatory response 
during orthodontically induced tooth movement [76]. 
This complex interplay of leptin with various cellular and 
molecular mechanisms underscores its significant yet 
intricate role in the regulation of OTM.

Phase 3: 7d ∼ 30d
Following bone resorption, a variety of cells includ-
ing monocytes, osteocytes and pre-osteoblasts are 
recruited to begin bone formation. One of the coupling 
signals linking of bone turnover is bone matrix-derived 
transforming growth factor beta (TGF-β) [77], playing a 
major role in bone and cartilage mechanobiological sig-
naling [78]. During phase 3, the absolute TGF-β1 level 
was detected a significant increase after force applica-
tion [70, 79]. Recent advances in cellular mechanobiol-
ogy highlight a feedback loop links TGFβ signaling and 
ECM material quality via cytoskeletal tension [78, 80]. 

Osteoclasts release and activate TGFβ stored in latent 
form in the bone matrix during resorption through creat-
ing an acidic microenvironment, as well as through the 
secretion of matrix metalloproteinases [81]. MMP2 and 
MMP9 were able to cleave latent TGF-β-binding pro-
tein-1 (LTBP1) to release TGF-β from ECM-bound stores 
[82], potentially the first step in the pathway by which 
matrix-bound TGF-β is rendered active. Since then, it 
has been reported that TGF-β inhibited the production 
of RANKL by osteoblasts thus decreasing osteoclas-
tic resorption [83, 84]. On the other hand, TGF-β also 
enhances early osteoblast differentiation by encouraging 
the recruitment and proliferation of osteoblast precur-
sors, as well as the expression of their product proteins 
[85].

Osteoclasts are now replaced by osteoblast-lineage cells 
which initiate bone formation. Concurrently, osteoprote-
gerin (OPG), synthesized by osteoblasts, acts as a decoy 
receptor for RANKL, effectively inhibiting the RANK-
RANKL interaction. Following this, OPG concentration 
diminishes as a response to RANKL’s elevation, crucial 
for maintaining the balance of bone remodeling. Clini-
cal evidence demonstrates a rapid decline in OPG con-
centration by day 7, followed by a slight increase by day 
21, and then a subsequent decrease to the lowest level by 
day 28 [86]. Since then, high ALP activity was detected in 
the osteoid areas of new bone formation [87] and its GCF 
concentration elevated significantly at days 14 to facili-
tate mineralization process [88, 92, 93]. Conversely, alter-
nate research delineates a significant reduction in ALP 
levels subsequent to force application, with a progressive 
declining trend in ALP activity observed on both the dis-
tal aspect of the canine and the mesial aspect of the sec-
ond premolar [89]. Despite that, ALP is involved in bone 
mineralization, where its primary role is to catalyze the 
hydrolysis of monophosphate esters at high pH [90]. Its 
expression and activity are key markers of osteoblast dif-
ferentiation and maturation [91].

All the potential molecular mechanisms identified are 
in line with trends observed in the expression levels of 
clinical GCF and PPI results. Based on these findings, 
we have integrated big data and both in vitro and in vivo 
experimental evidence to construct a network interaction 
hypothesis diagram for 13 DEPs across the three phases 
of OTM, as illustrated in Fig. 3.

Conclusions

1. Multiple secretory proteins have been studied in 
human GCF, which may serve as biomarkers for 
tooth movement. These include ALP (ALPL), IL-1β 
(IL1B), IL6, MMP1, MMP3, MMP8, MMP9, PGE2 
(PTGES), TGF-β (TGFB1), and TNF-α (TNF), 
aiming to elucidate the orthodontic bioprocess.
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2. Bioinformatic analysis spotlighted the top 10 hub 
proteins, including TNFSF11, TNF, IL6, IL1B, 
MMP9, MMP3, TGFB1, MMP8, LEP, MMP1 and 
their interactions involved in OTM. These key genes 
offer potential for precise modulation in future 
orthodontic interventions, positioning them as 
promising candidates to accelerate tooth movement 
while minimizing adverse effects.

3. A hypothetic diagram was proposed for the time-
course bioprocess in OTM, which involves three 
phases containing specific cellular and molecular 
components, biomechanical events and their 
interplay network.

Limitations
Proteins can be classified into membrane-bound and 
secretory categories. This review predominantly focuses 
on secretory proteins within the GCF, thus presenting 
limitations in the scope of detection targets. The cellular 
origin of these proteins is challenging to ascertain with 
precision, necessitating reliance on speculations based 
on prior research findings. The studies included in this 
review selectively focused on quantitative analysis of 
potential biomarkers, reflecting the subjective inclina-
tions of researchers, which, although scientifically valid, 
may bias the selection of study targets. This subjectivity 
highlights the importance of integrating high-through-
put molecular detection techniques like proteomics to 

achieve a more comprehensive and objective overview of 
OTM’s underlying mechanisms. Moreover, the scope of 
the reviewed studies is often limited to specific popula-
tions and time points, and constrained by the number of 
available publications. Consequently, the derived conclu-
sions are based on assumptions and theories grounded 
in the data, potentially limiting their applicability across 
diverse populations or in different circumstances.
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