Zhao XG, Lin J, Jiang JH, Wang Q, Hong S. Validity and reliability of a method for assessment of cervical vertebral maturation. Angle Orthod. 2012;82:229–34.
Article
PubMed
Google Scholar
Moss ML. The functional matrix. In: Kraus BS, Riedel R, editors. Vistas in orthodontics. Philadelphia: Lea & Febiger; 1962. p. 85–98.
Google Scholar
Di Vece L, Faleri G, Picciotti M, Guido L, Giorgetti R. Does a transverse maxillary deficit affect the cervical vertebrae? A pilot study. Am J Orthod Dentofac Orthop. 2010;137:515–9.
Article
Google Scholar
Sonnesen L, Kjaer I. Anomalies of the cervical vertebrae in patients with skeletal class II malocclusion and horizontal maxillary overjet. Am J Orthod Dentofac Orthop. 2008;133:188.
Article
Google Scholar
Gooding CA, Neuhauser EB. Growth and development of the vertebral body in the presence and absence of normal stress. Am J Roentgenol Radium Therapy, Nucl Med. 1965;93:388–94.
Google Scholar
Bridges PS. Vertebral arthritis and physical activities in the prehistoric southeastern United States. Am J Phys Anthropol. 1994;93:83–93.
Article
PubMed
Google Scholar
Bench RW. Growth of the cervical vertebrae as related to tongue, face and denture behavior. Am J Orthod. 1963;49:183–214.
Article
Google Scholar
Mao JJ, Nah HD. Growth and development: hereditary and mechanical modulations. Am J Orthod Dentofac Orthop. 2004;125:676–89.
Article
Google Scholar
Mohan S, Richman C, Guo R, Amaar Y, Donahue LR, Wergedal J, et al. Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and -independent mechanisms. Endocrinology. 2003;144:929–36.
Article
PubMed
PubMed Central
Google Scholar
Maor G, Hochberg Z, Silbermann M. Insulin-like growth factor 1 accelerates proliferation and differentiation of cartilage progenitor cells in cultures of neonatal mandibular condyles. Acta Endocrinol. 1993;128:56–64.
PubMed
Google Scholar
Rosenberg AE. Bones, joints, and soft tissue tumors. In: Kumar V, Abbas AK, Fausto N, editors. Robbins and Cotran pathologic basis of disease. Philadelphia: Elsevier; 2004. p. 1273–324.
Google Scholar
Canalis E. Effect of growth factors on bone cell replication and differentiation. Clin Orthop Relat Res. 1984;193:246–63.
Google Scholar
Canalis E, Lian JB. Effects of bone associated growth factors on DNA, collagen and osteocalcin synthesis in cultured fetal rat calvariae. Bone. 1988;9:143–6.
Article
Google Scholar
Isgaard J, Nilsson A, Lindahl A, Jansson JO, Isaksson OG. Effects of local administration of GH and IGF-1 on longitudinal bone growth in rats. Am J Phys. 1986;250:E367–72.
Google Scholar
Russel SM, Spencer EM. Local injections of human or rat growth hormone or of purified human somatomedin-C stimulate unilateral tibial epiphyseal growth in hypophysectomized rats. Endocrinology. 1985;116:2563–7.
Article
Google Scholar
Johansen JS, Jensen SB, Riis BJ, Rasmussen L, Zachmann M, Christiansen C. Serum bone Gla protein: a potential marker of growth hormone (GH) deficiency and the response to GH therapy. J Clin Endocrinol Metab. 1990;71:122–6.
Article
PubMed
Google Scholar
Ivaska KK, Hentunen TA, Vaaraniemi J, Ylipahkala H, Pettersson K, Vaananen HK. Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem. 2004;279:18361–9.
Article
PubMed
Google Scholar
Johansen JS, Giwercman A, Hartwell D, Nielsen CT, Price PA, Christiansen C, et al. Serum bone Gla-protein as a marker of bone growth in children and adolescents: correlation with age, height, serum insulin-like growth factor I, and serum testosterone. J Clin Endocrinol Metab. 1988;67:273–8.
Article
PubMed
Google Scholar
Hassel B, Farman AG. Skeletal maturation evaluation using cervical vertebrae. Am J Orthod Dentofac Orthop. 1995;107:58–66.
Article
Google Scholar
Sinha M, Tripathi T, Rai P, Gupta SK. Serum and urine insulin-like growth factor-1 as biochemical growth maturity indicators. Am J Orthod Dentofac Orthop. 2016;150:1020–7.
Article
Google Scholar
Delmas PD. Biochemical markers of bone turnover for the clinical investigation of osteoporosis. Osteoporos Int. 1993;3:81–6.
Article
PubMed
Google Scholar
Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix gla protein: vitamin k-dependent proteins in bone. Physiol Rev. 1989;69:990–1047.
PubMed
Google Scholar
Ishaq RA, Soliman SA, Foda MY, Fayed MM. Insulin-like growth factor 1: a biologic maturation indicator. Am J Orthod Dentofac Orthop. 2012;142:654–61.
Article
Google Scholar
Jain S, Jain S, Deoskar A, Prasad VS. Serum IGF-1 levels as a clinical tool for optimizing orthodontic treatment timing. Prog Orthod. 2013;14:46.
Article
PubMed
PubMed Central
Google Scholar
Jain N, Tripathi T, Gupta SK, Rai P, Kanase A, Kalra S. Serum IGF-1, IGFBP-3 and their ratio: potential biochemical growth maturity indicators. Prog Orthod. 2017;18:11.
Article
PubMed
PubMed Central
Google Scholar
Gupta S, Deoskar A, Gupta P, Jain S. Serum insulin-like growth factor-1 levels in females and males in different cervical vertebral maturation stages. Dental Press J Orthod. 2015;20:68–75.
Article
PubMed
PubMed Central
Google Scholar
Ratcliffe SG, Masera N, Skinner AM, Jones J, Morrell D, Pan H, et al. Urinary insulin-like-growth factor 1 in normal children: relationship to age, pubertal status and urinary growth hormone. Growth Regul. 1995;5:53–9.
PubMed
Google Scholar
Masoud M, Masoud I, Kent RL Jr, Gowharji N, Cohen LE. Assessing skeletal maturity by using blood spot insulin-like growth factor I (IGF-I) testing. Am J Orthod Dentofac Orthop. 2008;134:209–16.
Article
Google Scholar
Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144:796–809.
Article
PubMed
PubMed Central
Google Scholar
Libanati C, Baylink DJ, Lois-Wenzel E, Srinvasan N, Mohan S. Studies on the potential mediators of skeletal changes occurring during puberty in girls. J Clin Endocrinol Metab. 1999;84:2807–14.
PubMed
Google Scholar
Blumsohn A, Hannon RA, Wrate R, Barton J, Al-Dehaimi AW, Colwell A, et al. Biochemical markers of bone turnover in girls during puberty. Clin Endocrinol. 1994;40:663–70.
Article
Google Scholar
Magnusson P, Hager A, Larsson L. Serum osteocalcin and bone and liver alkaline phosphatase isoforms in healthy children and adolescents. Pediatr Res. 1995;38:955–61.
Article
PubMed
Google Scholar
Tarallo P, Henny J, Fournier B, Siest G. Plasma osteocalcin: biological variations and reference limits. Scand J Clin Lab Invest. 1990;50:649–55.
Article
PubMed
Google Scholar
Karsenty G. Bone endocrine regulation of energy metabolism and male reproduction. C R Biol. 2011;334:720–4.
Article
PubMed
Google Scholar
Ninomiya JT, Tracy RP, Calore JD, Gendreau MA, Kelm RJ, Mann KG. Heterogeneity of human bone. J Bone Miner Res. 1990;5:933–8.
Article
PubMed
Google Scholar
Magnusson P, Larsson L, Magnusson M, Davie MW, Sharp CA. Isoforms of bone alkaline phosphatase: characterization and origin in human trabecular and cortical bone. J Bone Miner Res. 1999;14:1926–33.
Article
PubMed
Google Scholar
Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, et al. Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res. 2005;20:529–35.
Article
PubMed
Google Scholar
Johansson AG, Lindh E, Ljunghall S. Insulin-like growth factor I stimulates bone turnover in osteoporosis. Lancet. 1992;339:1619.
Article
PubMed
Google Scholar
Xu L, Nicholson P, Wang Q, Alen M, Cheng S. Bone and muscle development during puberty in girls: a seven-year longitudinal study. J Bone Miner Res. 2009;24:1693–8.
Article
PubMed
Google Scholar
Neu CM, Rauch F, Rittweger J, Manz F, Schoenau E. Influence of puberty on muscle development at the forearm. Am J Physiol Endocrinol Metab. 2002;283:E103–7.
Article
PubMed
Google Scholar
Murray PG, Clayton PE. Endocrine control of growth. Am J Med Genet C Semin Med Genet. 2013;163C:76–85.
Article
PubMed
Google Scholar
Wolfe A, Divall S, Wu S. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1). Front Neuroendocrinol. 2014;35:558–72.
Article
PubMed
PubMed Central
Google Scholar
Hogan BL. Bone morphogenic proteins: multifunctional regulators of vertebrate development. Genes Dev. 1996;10:1580–94.
Article
PubMed
Google Scholar
Hayden JM, Mohan S, Baylink DJ. The insulin-like growth factor system and the coupling of formation to resorption. Bone. 1995;17:93S–8S.
Article
PubMed
Google Scholar
Lewinson D, Bialik GM, Hochberg Z. Differential effects of hypothyroidism on the cartilage and the osteogenic process in the mandibular condyle: recovery by growth hormone and thyroxine. Endocrinology. 1994;135:1504–10.
Article
PubMed
Google Scholar
Visnapuu V, Peltomaki T, Ronning O, Vahlberg T, Helenius H. Growth hormone and insulin-like growth factor I receptors in the temporomandibular joint of the rat. J Dent Res. 2001;80:1903–7.
Article
PubMed
Google Scholar