Asiry MA. Biological aspects of orthodontic tooth movement: a review of literature. Saudi J Biol Sci. 2018;25(6):1027–32 Available from: https://pubmed.ncbi.nlm.nih.gov/30174498.
Article
Google Scholar
Li Y, Jacox LA, Little SH, Ko C-C. Orthodontic tooth movement: the biology and clinical implications. Kaohsiung J Med Sci. 2018;34(4):207–14. https://doi.org/10.1016/j.kjms.2018.01.007.
Article
PubMed
Google Scholar
von Böhl M, Kuijpers-Jagtman AM. Hyalinization during orthodontic tooth movement: a systematic review on tissue reactions. Eur J Orthod. 2009;31(1):30–6. https://doi.org/10.1093/ejo/cjn080.
Article
Google Scholar
Reddy RS, Singaraju GS, Mandava P, Ganugapanta VR. Biology of tooth movement. Ann Essences Dent. 2015;7(4):c-21c.
Google Scholar
Baloul SS. Osteoclastogenesis and osteogenesis during tooth movement. Front Oral Biol. 2016;18:75–9. https://doi.org/10.1159/000351901.
Article
PubMed
Google Scholar
Murr A, Pink C, Hammer E, Michalik S, Dhople V, Holtfreter B, et al. Cross-sectional association of salivary proteins with age, sex, body mass index, smoking, and education. J Proteome Res. 2017;16(6):2273–81. https://doi.org/10.1021/acs.jproteome.7b00133.
Article
PubMed
Google Scholar
Marvin RK, Saepoo MB, Ye S, White DB, Liu R, Hensley K, et al. Salivary protein changes in response to acute stress in medical residents performing advanced clinical simulations: a pilot proteomics study. Biomarkers. 2017;22(3–4):372–82 Available from: https://europepmc.org/articles/PMC5551674.
Article
Google Scholar
Allen R, Edelmann A, Abdulmajeed A, Bencharit S. Salivary protein biomarkers associated with orthodontic tooth movement: a systematic review. Orthod Craniofac Res. 2019;22(S1):14–20. https://doi.org/10.1111/ocr.12258.
Article
PubMed
Google Scholar
Zhang J, Zhou S, Zheng H, Zhou Y, Chen F, Lin J. Magnetic bead-based salivary peptidome profiling analysis during orthodontic treatment durations. Biochem Biophys Res Commun. 2012;421(4):844–9. https://doi.org/10.1016/j.bbrc.2012.04.100.
Article
PubMed
Google Scholar
Davidovitch Z. Cell biology associated with orthodontic tooth movement. In: The Periodontal Ligament in Health and Disease [Internet]; 1995. p. 259–78. https://doi.org/10.1093/ejo/18.6.670.
Chapter
Google Scholar
Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res. 2009;88(7):597–608. https://doi.org/10.1177/0022034509338914.
Article
PubMed
Google Scholar
Pregizer SK, Mortlock DP. Dynamics and cellular localization of Bmp2, Bmp4, and Noggin transcription in the postnatal mouse skeleton. J bone Miner Res Off J Am Soc Bone Miner Res. 2015;30(1):64–70. https://doi.org/10.1002/jbmr.2313.
Article
Google Scholar
Odagaki N, Ishihara Y, Wang Z, Ei Hsu Hlaing E, Nakamura M, Hoshijima M, et al. Role of osteocyte-PDL crosstalk in tooth movement via SOST/sclerostin. J Dent Res. 2018;97(12):1374–82. https://doi.org/10.1177/0022034518771331.
Article
PubMed
Google Scholar
Yao Y, Bennett BJ, Wang X, Rosenfeld ME, Giachelli C, Lusis AJ, et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res. 2010;107(4):485–94. https://doi.org/10.1161/CIRCRESAHA.110.219071.
Article
PubMed
PubMed Central
Google Scholar
Helbing T, Rothweiler R, Ketterer E, Goetz L, Heinke J, Grundmann S, et al. BMP activity controlled by BMPER regulates the proinflammatory phenotype of endothelium. Blood. 2011;118(18):5040–9. https://doi.org/10.1182/blood-2011-03-339762.
Article
PubMed
Google Scholar
Vukicevic S, Grgurevic L. In: Parnham M, editor. Bone morphogenetic proteins in inflammation BT - encyclopedia of inflammatory diseases. Basel: Springer Basel; 2015. p. 1–15. https://doi.org/10.1007/978-3-0348-0620-6_212-1.
Chapter
Google Scholar
Ikegame M, Ishibashi O, Yoshizawa T, Shimomura J, Komori T, Ozawa H, et al. Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture. J Bone Miner Res Off J Am Soc Bone Miner Res. 2001;16(1):24–32. https://doi.org/10.1359/jbmr.2001.16.1.24.
Article
Google Scholar
Ainamo J, Bay I. Problems and proposals for recording gingivitis and plaque. Int Dent J. 1975;25(4):229–35 Available from: http://europepmc.org/abstract/MED/1058834.
PubMed
Google Scholar
O’Leary TJ, Drake RB, Naylor JE. The plaque control record. J Periodontol. 1972;43(1):38. https://doi.org/10.1902/jop.1972.43.1.38.
Article
PubMed
Google Scholar
Gupta N, Pevzner PA. False discovery rates of protein identifications: a strike against the two-peptide rule. J Proteome Res. 2009;8(9):4173–81. https://doi.org/10.1021/pr9004794.
Article
PubMed
PubMed Central
Google Scholar
Zahn-Zabal M, Michel P-A, Gateau A, Nikitin F, Schaeffer M, Audot E, et al. The neXtProt knowledgebase in 2020: data, tools and usability improvements. Nucleic Acids Res. 2020;48(D1):D328–34. https://doi.org/10.1093/nar/gkz995.
Article
PubMed
Google Scholar
Grgurevic L, Macek B, Durdevic D, Vukicevic S. Detection of bone and cartilage-related proteins in plasma of patients with a bone fracture using liquid chromatography-mass spectrometry. Int Orthop. 2007;31(6):743–51. https://doi.org/10.1007/s00264-007-0404-z.
Article
PubMed
PubMed Central
Google Scholar
Schulz BL, Cooper-White J, Punyadeera CK. Saliva proteome research: current status and future outlook. Crit Rev Biotechnol. 2013;33(3):246–59. https://doi.org/10.3109/07388551.2012.687361.
Article
PubMed
Google Scholar
Ellias MF, Zainal Ariffin SH, Karsani SA, Abdul Rahman M, Senafi S, Megat Abdul Wahab R. Proteomic analysis of saliva identifies potential biomarkers for orthodontic tooth movement. Sci World J. 2012;2012:647240. https://doi.org/10.1100/2012/647240.
Article
Google Scholar
Larraín J, Bachiller D, Lu B, Agius E, Piccolo S, De Robertis EM. BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development. 2000;127(4):821–30. https://doi.org/10.1242/dev.127.4.821.
Article
PubMed
PubMed Central
Google Scholar
Kelley R, Ren R, Pi X, Wu Y, Moreno I, Willis M, et al. A concentration-dependent endocytic trap and sink mechanism converts Bmper from an activator to an inhibitor of Bmp signaling. J Cell Biol. 2009;184(4):597–609. https://doi.org/10.1083/jcb.200808064.
Article
PubMed
PubMed Central
Google Scholar
Cao H, Jheon A, Li X, Sun Z, Wang J, Florez S, et al. The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation. Development. 2013;140(16):3348–59. https://doi.org/10.1242/dev.089193.
Article
PubMed
PubMed Central
Google Scholar
Esser JS, Rahner S, Deckler M, Bode C, Patterson C, Moser M. Fibroblast growth factor signaling pathway in endothelial cells is activated by BMPER to promote angiogenesis. Arterioscler Thromb Vasc Biol. 2015;35(2):358–67. https://doi.org/10.1161/ATVBAHA.114.304345.
Article
PubMed
Google Scholar
Ishizaki H, Westermark A, van Setten G, Pyykkö I. Basic fibroblast growth factor (bFGF) in saliva--physiological and clinical implications. Acta Otolaryngol Suppl. 2000;543:193–5. https://doi.org/10.1080/000164800454378.
Article
PubMed
Google Scholar
Fujihara C, Kanai Y, Masumoto R, Kitagaki J, Matsumoto M, Yamada S, et al. Fibroblast growth factor-2 inhibits CD40-mediated periodontal inflammation. J Cell Physiol. 2019;234(5):7149–60. https://doi.org/10.1002/jcp.27469.
Article
PubMed
Google Scholar
Lallier TE, Spencer A. Use of microarrays to find novel regulators of periodontal ligament fibroblast differentiation. Cell Tissue Res. 2007;327(1):93–109. https://doi.org/10.1007/s00441-006-0282-5.
Article
PubMed
Google Scholar
He X, Chao Y, Zhou G, Chen Y. Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats. Gene. 2016;575(2 Pt 2):393–8. https://doi.org/10.1016/j.gene.2015.09.034.
Article
PubMed
Google Scholar
Eguchi K, Akiba Y, Akiba N, Nagasawa M, Cooper LF, Uoshima K. Insulin-like growth factor binding Protein-3 suppresses osteoblast differentiation via bone morphogenetic protein-2. Biochem Biophys Res Commun. 2018;507(1–4):465–70. https://doi.org/10.1016/j.bbrc.2018.11.065.
Article
PubMed
Google Scholar
Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16(1):3–34. https://doi.org/10.1210/edrv-16-1-3.
Article
PubMed
Google Scholar
Kawai M, Rosen CJ. The insulin-like growth factor system in bone: basic and clinical implications. Endocrinol Metab Clin North Am. 2012;41(2):323–33, vi. https://doi.org/10.1016/j.ecl.2012.04.013.
Article
PubMed
PubMed Central
Google Scholar
Saggese R, Federico G, Gandini P. The IGF-1--IGFBPs system in the crevicular fluid: its changes during orthodontic movement. Prog Orthod. 2005;6(1):114–8 Available from: http://europepmc.org/abstract/MED/15977342.
PubMed
Google Scholar
Jia S, Zhou J, Gao Y, Baek J-A, Martin JF, Lan Y, et al. Roles of Bmp4 during tooth morphogenesis and sequential tooth formation. Development. 2013;140(2):423–32. https://doi.org/10.1242/dev.081927.
Article
PubMed
PubMed Central
Google Scholar
Kim J-Y, Cho S-W, Hwang H-J, Lee M-J, Lee J-M, Cai J, et al. Evidence for expansion-based temporal BMP4/NOGGIN interactions in specifying periodontium morphogenesis. Cell Tissue Res. 2007;330(1):123–32. https://doi.org/10.1007/s00441-007-0434-2.
Article
PubMed
Google Scholar
Ou M, Zhao Y, Zhang F, Huang X. Bmp2 and Bmp4 accelerate alveolar bone development. Connect Tissue Res. 2015;56(3):204–11. https://doi.org/10.3109/03008207.2014.996701.
Article
PubMed
Google Scholar
Nakase T, Nomura S, Yoshikawa H, Hashimoto J, Hirota S, Kitamura Y, et al. Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing. J Bone Miner Res Off J Am Soc Bone Miner Res. 1994;9(5):651–9.
Article
Google Scholar
Yu M, Wang H, Fan Z, Xie C, Liu H, Liu Y, et al. BMP4 mutations in tooth agenesis and low bone mass. Arch Oral Biol. 2019;103:40–6 Available from: https://europepmc.org/articles/PMC6639811.
Article
Google Scholar
Gluhak-Heinrich J, Guo D, Yang W, Harris MA, Lichtler A, Kream B, et al. New roles and mechanism of action of BMP4 in postnatal tooth cytodifferentiation. Bone. 2010;46(6):1533–45. https://doi.org/10.1016/j.bone.2010.02.024.
Article
PubMed
PubMed Central
Google Scholar
Ye L, Zhang S, Ke H, Bonewald L, Feng J. Periodontal breakdown in the Dmp1 Null mouse model of hypophosphatemic rickets. J Dent Res. 2008;87(7):624–9. https://doi.org/10.1177/154405910808700708.
Article
PubMed
PubMed Central
Google Scholar
Huang H-Y, Hu L-L, Song T-J, Li X, He Q, Sun X, et al. Involvement of cytoskeleton-associated proteins in the commitment of C3H10T1/2 pluripotent stem cells to adipocyte lineage induced by BMP2/4. Mol Cell Proteomics. 2011;10(1):M110.002691. https://doi.org/10.1074/mcp.M110.002691.
Article
PubMed
Google Scholar
Li Q, Zhang S, Sui Y, Fu X, Li Y, Wei S. Sequential stimulation with different concentrations of BMP4 promotes the differentiation of human embryonic stem cells into dental epithelium with potential for tooth formation. Stem Cell Res Ther. 2019;10(1):276. https://doi.org/10.1186/s13287-019-1378-7.
Article
PubMed
PubMed Central
Google Scholar
Swietlik JJ, Sinha A, Meissner F. Dissecting intercellular signaling with mass spectrometry-based proteomics. Curr Opin Cell Biol. 2020;63:20–30. https://doi.org/10.1016/j.ceb.2019.12.002.
Article
PubMed
Google Scholar