Wise GE, King GJ. Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res. 2008;87:414–34. https://doi.org/10.1177/154405910808700509.
Article
Google Scholar
Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofac Orthop. 2006;129(469):e461–e432. https://doi.org/10.1016/j.ajodo.2005.10.007.
Article
Google Scholar
Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature. 2000;405:704–6. https://doi.org/10.1038/35015116.
Article
Google Scholar
Chen JH, Liu C, You L, Simmons CA. Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone. J Biomech. 2010;43:108–18. https://doi.org/10.1016/j.jbiomech.2009.09.016.
Article
Google Scholar
Zhang L, et al. Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by the Wnt/β-catenin pathway. Biochem Biophys Acta. 2016;1860:2211–9. https://doi.org/10.1016/j.bbagen.2016.05.003.
Article
Google Scholar
Feng L, et al. PDL progenitor-mediated PDL recovery contributes to orthodontic relapse. J Dent Res. 2016;95:1049–56. https://doi.org/10.1177/0022034516648604.
Article
Google Scholar
Zhou T, et al. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. Elife. 2020. https://doi.org/10.7554/eLife.52779.
Article
Google Scholar
Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte mechanobiology. Curr Osteoporosis Rep. 2017;15:318–25. https://doi.org/10.1007/s11914-017-0373-0.
Article
Google Scholar
Tang N, et al. Up-regulated osteogenic transcription factors during early response of human periodontal ligament stem cells to cyclic tensile strain. Arch Med Sci AMS. 2012;8:422–30. https://doi.org/10.5114/aoms.2012.28810.
Article
Google Scholar
Hung PS, et al. miR-146a induces differentiation of periodontal ligament cells. J Dent Res. 2010;89:252–7. https://doi.org/10.1177/0022034509357411.
Article
Google Scholar
Fujihara C, et al. Role of mechanical stress-induced glutamate signaling-associated molecules in cytodifferentiation of periodontal ligament cells. J Biol Chem. 2010;285:28286–97. https://doi.org/10.1074/jbc.M109.097303.
Article
Google Scholar
Li W, et al. Osteocytes promote osteoclastogenesis via autophagy-mediated RANKL secretion under mechanical compressive force. Arch Biochem Biophys. 2020;694:108594. https://doi.org/10.1016/j.abb.2020.108594.
Article
Google Scholar
Matsuike R, et al. Continuous application of compressive force induces fusion of osteoclast-like RAW264.7 cells via upregulation of RANK and downregulation of LGR4. Life Sci. 2018;201:30–6. https://doi.org/10.1016/j.lfs.2018.03.038.
Article
Google Scholar
Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2001;2:986–91. https://doi.org/10.1093/embo-reports/kve230.
Article
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clin Res Ed). 2009;339:2535. https://doi.org/10.1136/bmj.b2535.
Article
Google Scholar
Henneman S, Von den Hoff JW, Maltha JC. Mechanobiology of tooth movement. Eur J Orthod. 2008;30:299–306. https://doi.org/10.1093/ejo/cjn020.
Article
Google Scholar
Li Y, Zhan Q, Bao M, Yi J, Li Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci. 2021;13:20. https://doi.org/10.1038/s41368-021-00125-5.
Article
Google Scholar
Huang H, Yang R, Zhou YH. Mechanobiology of periodontal ligament stem cells in orthodontic tooth movement. Stem Cells Int. 2018;2018:6531216. https://doi.org/10.1155/2018/6531216.
Article
Google Scholar
Wagh K, et al. Mechanical regulation of transcription: recent advances. Trends Cell Biol. 2021;31:457–72. https://doi.org/10.1016/j.tcb.2021.02.008.
Article
Google Scholar
Liu P, et al. Effects of mechanical stress stimulation on function and expression mechanism of osteoblasts. Front Bioeng Biotechnol. 2022;10:830722. https://doi.org/10.3389/fbioe.2022.830722.
Article
Google Scholar
Litzenberger JB, Kim JB, Tummala P, Jacobs CR. Beta1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcif Tissue Int. 2010;86:325–32. https://doi.org/10.1007/s00223-010-9343-6.
Article
Google Scholar
Michael M, Parsons M. New perspectives on integrin-dependent adhesions. Curr Opin Cell Biol. 2020;63:31–7. https://doi.org/10.1016/j.ceb.2019.12.008.
Article
Google Scholar
Sun Y, Yuan Y, Wu W, Lei L, Zhang L. The effects of locomotion on bone marrow mesenchymal stem cell fate: insight into mechanical regulation and bone formation. Cell Biosci. 2021;11:88. https://doi.org/10.1186/s13578-021-00601-9.
Article
Google Scholar
Nguyen AM, Jacobs CR. Emerging role of primary cilia as mechanosensors in osteocytes. Bone. 2013;54:196–204. https://doi.org/10.1016/j.bone.2012.11.016.
Article
Google Scholar
Coste B, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330:55–60. https://doi.org/10.1126/science.1193270.
Article
Google Scholar
Li X, et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism. Elife. 2019. https://doi.org/10.7554/eLife.49631.
Article
Google Scholar
Szczot M, Nickolls AR, Lam RM, Chesler AT. The form and function of PIEZO2. Annu Rev Biochem. 2021;90:507–34. https://doi.org/10.1146/annurev-biochem-081720-023244.
Article
Google Scholar
Lee W, Guilak F, Liedtke W. Role of piezo channels in joint health and injury. Curr Top Membr. 2017;79:263–73. https://doi.org/10.1016/bs.ctm.2016.10.003.
Article
Google Scholar
Yoneda M, et al. PIEZO1 and TRPV4, which are distinct mechano-sensors in the osteoblastic MC3T3-E1 cells, modify cell-proliferation. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20194960.
Article
Google Scholar
O’Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci USA. 2014;111:1316–21. https://doi.org/10.1073/pnas.1319569111.
Article
Google Scholar
Sandbo N, Smolyaninova LV, Orlov SN, Dulin NO. Control of myofibroblast differentiation and function by cytoskeletal signaling. Biochem Mosc. 2016;81:1698–708. https://doi.org/10.1134/S0006297916130071.
Article
Google Scholar
Lele TP, Dickinson RB, Gundersen GG. Mechanical principles of nuclear shaping and positioning. J Cell Biol. 2018;217:3330–42. https://doi.org/10.1083/jcb.201804052.
Article
Google Scholar
Alam SG, et al. The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity. Sci Rep. 2016;6:38063. https://doi.org/10.1038/srep38063.
Article
Google Scholar
Agrawal A, Lele TP. Mechanics of nuclear membranes. J Cell Sci. 2019. https://doi.org/10.1242/jcs.229245.
Article
Google Scholar
Choi RB, Robling AG. The Wnt pathway: an important control mechanism in bone’s response to mechanical loading. Bone. 2021;153:116087. https://doi.org/10.1016/j.bone.2021.116087.
Article
Google Scholar
Robling AG, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283:5866–75. https://doi.org/10.1074/jbc.M705092200.
Article
Google Scholar
Pflanz D, et al. Sost deficiency led to a greater cortical bone formation response to mechanical loading and altered gene expression. Sci Rep. 2017;7:9435. https://doi.org/10.1038/s41598-017-09653-9.
Article
Google Scholar
Mao B, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature. 2002;417:664–7. https://doi.org/10.1038/nature756.
Article
Google Scholar
Holguin N, Brodt MD, Silva MJ. Activation of Wnt signaling by mechanical loading is impaired in the bone of old mice. J Bone Miner Res. 2016;31:2215–26. https://doi.org/10.1002/jbmr.2900.
Article
Google Scholar
Ziouti F, et al. NOTCH signaling is activated through mechanical strain in human bone marrow-derived mesenchymal stromal cells. Stem Cells Int. 2019;2019:5150634. https://doi.org/10.1155/2019/5150634.
Article
Google Scholar
Yuan J, Dong X, Yap J, Hu J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J Hematol Oncol. 2020;13:113. https://doi.org/10.1186/s13045-020-00949-4.
Article
Google Scholar
Bin G, et al. Fluid shear stress inhibits TNF-α-induced osteoblast apoptosis via ERK5 signaling pathway. Biochem Biophys Res Commun. 2015;466:117–23. https://doi.org/10.1016/j.bbrc.2015.08.117.
Article
Google Scholar
Dupont S, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–83. https://doi.org/10.1038/nature10137.
Article
Google Scholar
Wei Q, et al. BMP-2 signaling and mechanotransduction synergize to drive osteogenic differentiation via YAP/TAZ. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2020;7:1902931. https://doi.org/10.1002/advs.201902931.
Article
Google Scholar
da Silva Madaleno C, Jatzlau J, Knaus P. BMP signalling in a mechanical context—implications for bone biology. Bone. 2020;137:115416. https://doi.org/10.1016/j.bone.2020.115416.
Article
Google Scholar
Grafe I, et al. TGF-β family signaling in mesenchymal differentiation. Cold Spring Harbor Perspect Biol. 2018. https://doi.org/10.1101/cshperspect.a022202.
Article
Google Scholar
Chang M, Lin H, Luo M, Wang J, Han G. Integrated miRNA and mRNA expression profiling of tension force-induced bone formation in periodontal ligament cells. In Vitro Cell Dev Biol Anim. 2015;51:797–807. https://doi.org/10.1007/s11626-015-9892-0.
Article
Google Scholar
Wu Y, Ou Y, Liao C, Liang S, Wang Y. High-throughput sequencing analysis of the expression profile of microRNAs and target genes in mechanical force-induced osteoblastic/cementoblastic differentiation of human periodontal ligament cells. Am J Transl Res. 2019;11:3398–411.
Google Scholar
Yu L, et al. DNA methylation of noncoding RNAs: new insights into osteogenesis and common bone diseases. Stem Cell Res Ther. 2020;11:109. https://doi.org/10.1186/s13287-020-01625-7.
Article
Google Scholar
Li G, et al. Hypermethylation of microRNA-149 activates SDF-1/CXCR4 to promote osteogenic differentiation of mesenchymal stem cells. J Cell Physiol. 2019;234:23485–94. https://doi.org/10.1002/jcp.28917.
Article
Google Scholar
Wei F, Yang S, Wang S. MicroRNAs: a critical regulator under mechanical force. Histol Histopathol. 2018;33:335–42. https://doi.org/10.14670/hh-11-924.
Article
Google Scholar
Lian JB, et al. MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol. 2012;8:212–27. https://doi.org/10.1038/nrendo.2011.234.
Article
Google Scholar
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.
Article
Google Scholar
Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 2010;38:323–32. https://doi.org/10.1016/j.molcel.2010.03.013.
Article
Google Scholar
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610. https://doi.org/10.1038/nrg2843.
Article
Google Scholar
Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11:441–50. https://doi.org/10.1016/j.devcel.2006.09.009.
Article
Google Scholar
Winter J, Diederichs S. MicroRNA biogenesis and cancer. Methods Mol Biol (Clifton, NJ). 2011;676:3–22. https://doi.org/10.1007/978-1-60761-863-8_1.
Article
Google Scholar
Wei FL, et al. Mechanical force-induced specific MicroRNA expression in human periodontal ligament stem cells. Cells Tissues Organs. 2014;199:353–63. https://doi.org/10.1159/000369613.
Article
Google Scholar
Hong M, et al. MiR-34a suppresses osteoblast differentiation through glycolysis inhibition by targeting lactate dehydrogenase-A (LDHA). In Vitro Cell Dev Biol Anim. 2020;56:480–7. https://doi.org/10.1007/s11626-020-00467-0.
Article
Google Scholar
Zeng HB, Dong LQ, Xu C, Zhao XH, Wu LG. Artesunate promotes osteoblast differentiation through miR-34a/DKK1 axis. Acta Histochem. 2020;122:151601. https://doi.org/10.1016/j.acthis.2020.151601.
Article
Google Scholar
Wang X, et al. Fluid shear stress regulates osteoblast proliferation and apoptosis via the lncRNA TUG1/miR-34a/FGFR1 axis. J Cell Mol Med. 2021;25:8734–47. https://doi.org/10.1111/jcmm.16829.
Article
Google Scholar
Chen L, et al. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells (Dayton, Ohio). 2014;32:902–12. https://doi.org/10.1002/stem.1615.
Article
Google Scholar
Zuo B, et al. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. J Bone Miner Res. 2015;30:330–45. https://doi.org/10.1002/jbmr.2352.
Article
Google Scholar
Chen Z, et al. Silencing of miR-138-5p sensitizes bone anabolic action to mechanical stimuli. Theranostics. 2020;10:12263–78. https://doi.org/10.7150/thno.53009.
Article
Google Scholar
Guo Y, et al. MicroRNA-218, microRNA-191*, microRNA-3070a and microRNA-33 are responsive to mechanical strain exerted on osteoblastic cells. Mol Med Rep. 2015;12:3033–8. https://doi.org/10.3892/mmr.2015.3705.
Article
Google Scholar
Wang H, et al. miR-33-5p, a novel mechano-sensitive microRNA promotes osteoblast differentiation by targeting Hmga2. Sci Rep. 2016;6:23170. https://doi.org/10.1038/srep23170.
Article
Google Scholar
Peng S, Yan Y, Li R, Dai H, Xu J. Extracellular vesicles from M1-polarized macrophages promote inflammation in the temporomandibular joint via miR-1246 activation of the Wnt/β-catenin pathway. Ann N Y Acad Sci. 2021. https://doi.org/10.1111/nyas.14590.
Article
Google Scholar
Liu L, et al. MicroRNA-503-5p inhibits stretch-induced osteogenic differentiation and bone formation. Cell Biol Int. 2017;41:112–23. https://doi.org/10.1002/cbin.10704.
Article
Google Scholar
Xu Y, et al. Long non-coding RNAs LOC100126784 and POM121L9P derived from bone marrow mesenchymal stem cells enhance osteogenic differentiation via the miR-503-5p/SORBS1 axis. Front Cell Dev Biol. 2021;9:723759. https://doi.org/10.3389/fcell.2021.723759.
Article
Google Scholar
Iwawaki Y, et al. MiR-494-3p induced by compressive force inhibits cell proliferation in MC3T3-E1 cells. J Biosci Bioeng. 2015;120:456–62. https://doi.org/10.1016/j.jbiosc.2015.02.006.
Article
Google Scholar
Chang M, et al. MicroRNA-195-5p regulates osteogenic differentiation of periodontal ligament cells under mechanical loading. J Cell Physiol. 2017;232:3762–74. https://doi.org/10.1002/jcp.25856.
Article
Google Scholar
Grünhagen J, et al. MiR-497∼195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res. 2015;30:796–808. https://doi.org/10.1002/jbmr.2412.
Article
Google Scholar
Wei Y, et al. miR-424-5p shuttled by bone marrow stem cells-derived exosomes attenuates osteogenesis via regulating WIF1-mediated Wnt/β-catenin axis. Aging. 2021;13:17190–201. https://doi.org/10.18632/aging.203169.
Article
Google Scholar
Jin Y, et al. MicroRNA-145 suppresses osteogenic differentiation of human jaw bone marrow mesenchymal stem cells partially via targeting semaphorin 3A. Connect Tissue Res. 2020;61:577–85. https://doi.org/10.1080/03008207.2019.1643334.
Article
Google Scholar
Kanzaki H, et al. Compression and tension variably alter Osteoprotegerin expression via miR-3198 in periodontal ligament cells. BMC Mol Cell Biol. 2019;20:6. https://doi.org/10.1186/s12860-019-0187-2.
Article
Google Scholar
Chen N, et al. microRNA-21 contributes to orthodontic tooth movement. J Dent Res. 2016;95:1425–33. https://doi.org/10.1177/0022034516657043.
Article
Google Scholar
Wei F, et al. microRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells. Stem Cells Dev. 2015;24:312–9. https://doi.org/10.1089/scd.2014.0191.
Article
Google Scholar
Meng YB, et al. microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway. J Orthop Res. 2015;33:957–64. https://doi.org/10.1002/jor.22884.
Article
Google Scholar
Li H, Yang F, Wang Z, Fu Q, Liang A. MicroRNA-21 promotes osteogenic differentiation by targeting small mothers against decapentaplegic 7. Mol Med Rep. 2015;12:1561–7. https://doi.org/10.3892/mmr.2015.3497.
Article
Google Scholar
Li X, et al. MicroRNA-21 promotes osteogenesis of bone marrow mesenchymal stem cells via the Smad7-Smad1/5/8-Runx2 pathway. Biochem Biophys Res Commun. 2017;493:928–33. https://doi.org/10.1016/j.bbrc.2017.09.119.
Article
Google Scholar
Zhang X, et al. Effect of microRNA-21 on hypoxia-inducible factor-1α in orthodontic tooth movement and human periodontal ligament cells under hypoxia. Exp Ther Med. 2019. https://doi.org/10.3892/etm.2019.7248.
Article
Google Scholar
Riddle RC, Khatri R, Schipani E, Clemens TL. Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling. J Mol Med (Berl). 2009;87:583–90. https://doi.org/10.1007/s00109-009-0477-9.
Article
Google Scholar
Nakamura T, et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell. 2007;130:811–23. https://doi.org/10.1016/j.cell.2007.07.025.
Article
Google Scholar
Chen Y, et al. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells. Gene. 2015;566:13–7. https://doi.org/10.1016/j.gene.2015.03.055.
Article
Google Scholar
Shin B, Hrdlicka HC, Delany AM, Lee SK. Inhibition of miR-29 activity in the myeloid lineage increases response to calcitonin and trabecular bone volume in mice. Endocrinology. 2021. https://doi.org/10.1210/endocr/bqab135.
Article
Google Scholar
Franceschetti T, Kessler CB, Lee SK, Delany AM. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem. 2013;288:33347–60. https://doi.org/10.1074/jbc.M113.484568.
Article
Google Scholar
Yu W, et al. N-AC-l-Leu-PEI-mediated miR-34a delivery improves osteogenic differentiation under orthodontic force. Oncotarget. 2017;8:110460–73. https://doi.org/10.18632/oncotarget.22790.
Article
Google Scholar
Zhang B, Yang L, Zheng W, Lin T. MicroRNA-34 expression in gingival crevicular fluid correlated with orthodontic tooth movement. Angle Orthod. 2020. https://doi.org/10.2319/090219-574.1.
Article
Google Scholar
Hu L, et al. Microtubule actin crosslinking factor 1 promotes osteoblast differentiation by promoting β-catenin/TCF1/Runx2 signaling axis. J Cell Physiol. 2018;233:1574–84. https://doi.org/10.1002/jcp.26059.
Article
Google Scholar
Bharadwaj R, et al. Cbl-associated protein regulates assembly and function of two tension-sensing structures in Drosophila. Development (Cambridge, England). 2013;140:627–38. https://doi.org/10.1242/dev.085100.
Article
Google Scholar
Chen JC, Jacobs CR. Mechanically induced osteogenic lineage commitment of stem cells. Stem Cell Res Ther. 2013;4:107. https://doi.org/10.1186/scrt318.
Article
Google Scholar
Holle AW, et al. High content image analysis of focal adhesion-dependent mechanosensitive stem cell differentiation. Integr Biol. 2016;8:1049–58. https://doi.org/10.1039/c6ib00076b.
Article
Google Scholar
Kuroda M, Ueda K, Kioka N. Vinexin family (SORBS) proteins regulate mechanotransduction in mesenchymal stem cells. Sci Rep. 2018;8:11581. https://doi.org/10.1038/s41598-018-29700-3.
Article
Google Scholar
Ishiwata S, et al. Upregulated miR-224-5p suppresses osteoblast differentiation by increasing the expression of Pai-1 in the lumbar spine of a rat model of congenital kyphoscoliosis. Mol Cell Biochem. 2020;475:53–62. https://doi.org/10.1007/s11010-020-03859-8.
Article
Google Scholar
Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Can Res. 2005;65:6029–33. https://doi.org/10.1158/0008-5472.Can-05-0137.
Article
Google Scholar
Li C, et al. miR-21 and miR-101 regulate PLAP-1 expression in periodontal ligament cells. Mol Med Rep. 2012;5:1340–6. https://doi.org/10.3892/mmr.2012.797.
Article
Google Scholar
Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700. https://doi.org/10.1016/s0092-8674(03)00432-x.
Article
Google Scholar
Rovas A, et al. Analysis of periodontitis-associated miRNAs in gingival tissue, gingival crevicular fluid, saliva and blood plasma. Arch Oral Biol. 2021;126:105125. https://doi.org/10.1016/j.archoralbio.2021.105125.
Article
Google Scholar
Fujita S, et al. miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol. 2008;378:492–504. https://doi.org/10.1016/j.jmb.2008.03.015.
Article
Google Scholar
Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis. Blood. 2011;117:3648–57. https://doi.org/10.1182/blood-2010-10-311415.
Article
Google Scholar
Asangani IA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36. https://doi.org/10.1038/sj.onc.1210856.
Article
Google Scholar
Tasca A, et al. SMAD1/5 signaling in osteoclasts regulates bone formation via coupling factors. PLoS ONE. 2018;13:e0203404. https://doi.org/10.1371/journal.pone.0203404.
Article
Google Scholar
Madhyastha R, et al. The pivotal role of microRNA-21 in osteoclastogenesis inhibition by anthracycline glycoside aloin. J Nat Med. 2019;73:59–66. https://doi.org/10.1007/s11418-018-1237-3.
Article
Google Scholar
Hu CH, et al. miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep. 2017;7:43191. https://doi.org/10.1038/srep43191.
Article
Google Scholar
Ito Y, et al. Cdc42 regulates bone modeling and remodeling in mice by modulating RANKL/M-CSF signaling and osteoclast polarization. J Clin Investig. 2010;120:1981–93. https://doi.org/10.1172/jci39650.
Article
Google Scholar
Wang Y, et al. miR-29b enhances the proliferation and migration of bone marrow mesenchymal stem cells in rats with castration-induced osteoporosis through the PI3K/AKT and TGF-β/Smad signaling pathways. Exp Ther Med. 2020;20:3185–95. https://doi.org/10.3892/etm.2020.9045.
Article
Google Scholar
Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinform. 2017;15:177–86. https://doi.org/10.1016/j.gpb.2016.12.005.
Article
Google Scholar
Chen G, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013;41:D983-986. https://doi.org/10.1093/nar/gks1099.
Article
Google Scholar
Feng Y, Wan P, Yin L. Long noncoding RNA X-Inactive Specific Transcript (XIST) promotes osteogenic differentiation of periodontal ligament stem cells by sponging microRNA-214-3p. Med Sci Monitor Int Med J Exp Clin Res. 2020;26:e918932. https://doi.org/10.12659/msm.918932.
Article
Google Scholar
Yu J, Xiao M, Ren G. Long non-coding RNA XIST promotes osteoporosis by inhibiting the differentiation of bone marrow mesenchymal stem cell by sponging miR-29b-3p that suppresses nicotinamide N-methyltransferase. Bioengineered. 2021;12:6057–69. https://doi.org/10.1080/21655979.2021.1967711.
Article
Google Scholar
Zhang Y, et al. Long noncoding RNA XIST modulates microRNA-135/CREB1 axis to influence osteogenic differentiation of osteoblast-like cells in mice with tibial fracture healing. Hum Cell. 2021. https://doi.org/10.1007/s13577-021-00629-6.
Article
Google Scholar
Sun X, et al. Knockdown of lncRNA XIST suppresses osteosarcoma progression by inactivating AKT/mTOR signaling pathway by sponging miR-375-3p. Int J Clin Exp Pathol. 2019;12:1507–17.
Google Scholar
Jia Q, Jiang W, Ni L. Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells. Arch Oral Biol. 2015;60:234–41. https://doi.org/10.1016/j.archoralbio.2014.10.007.
Article
Google Scholar
Cai N, Li C, Wang F. Silencing of LncRNA-ANCR promotes the osteogenesis of osteoblast cells in postmenopausal osteoporosis via targeting EZH2 and RUNX2. Yonsei Med J. 2019;60:751–9. https://doi.org/10.3349/ymj.2019.60.8.751.
Article
Google Scholar
Peng W, et al. Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758. Biochem Biophys Res Commun. 2018;503:815–21. https://doi.org/10.1016/j.bbrc.2018.06.081.
Article
Google Scholar
Zhang X, Zhao Y, Zhao Z, Han X, Chen Y. Knockdown of DANCR reduces osteoclastogenesis and root resorption induced by compression force via Jagged1. Cell Cycle (Georgetown, Tex). 2019;18:1759–69. https://doi.org/10.1080/15384101.2019.1632638.
Article
Google Scholar
Wu D, et al. Long noncoding RNA TUG1 promotes osteogenic differentiation of human periodontal ligament stem cell through sponging microRNA-222-3p to negatively regulate Smad2/7. Arch Oral Biol. 2020;117:104814. https://doi.org/10.1016/j.archoralbio.2020.104814.
Article
Google Scholar
Liu SC, et al. LncRNA TUG1 influences osteoblast proliferation and differentiation through the Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23:4584–90. https://doi.org/10.26355/eurrev_201906_18035.
Article
Google Scholar
Hao R, Wang B, Wang H, Huo Y, Lu Y. lncRNA TUG1 promotes proliferation and differentiation of osteoblasts by regulating the miR-545-3p/CNR2 axis. Braz J Med Boil Res = Revista brasileira de pesquisas medicas e biologicas. 2020;53:e9798. https://doi.org/10.1590/1414-431x20209798.
Article
Google Scholar
Du YJ, Yu QQ, Zheng XF, Wang SP. LncRNA TUG1 positively regulates osteoclast differentiation by targeting v-maf musculoaponeurotic fibrosarcoma oncogene homolog B. Autoimmunity. 2020;53:443–9. https://doi.org/10.1080/08916934.2020.1839891.
Article
Google Scholar
Jia B, et al. A feed-forward regulatory network lncPCAT1/miR-106a-5p/E2F5 regulates the osteogenic differentiation of periodontal ligament stem cells. J Cell Physiol. 2019;234:19523–38. https://doi.org/10.1002/jcp.28550.
Article
Google Scholar
Huang Y, Zheng Y, Jia L, Li W. Long noncoding RNA H19 promotes osteoblast differentiation via TGF-β1/Smad3/HDAC signaling pathway by deriving miR-675. Stem Cells (Dayton, Ohio). 2015;33:3481–92. https://doi.org/10.1002/stem.2225.
Article
Google Scholar
Liang WC, et al. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep. 2016;6:20121. https://doi.org/10.1038/srep20121.
Article
Google Scholar
Wu J, et al. Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138. Bone. 2018;108:62–70. https://doi.org/10.1016/j.bone.2017.12.013.
Article
Google Scholar
Wang Y, et al. Long noncoding RNA H19 mediates LCoR to impact the osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188. J Cell Physiol. 2018;233:7435–46. https://doi.org/10.1002/jcp.26589.
Article
Google Scholar
Xiaoling G, Shuaibin L, Kailu L. MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC Med Genet. 2020;21:11. https://doi.org/10.1186/s12881-020-0948-y.
Article
Google Scholar
Ma X, et al. Human amnion-derived mesenchymal stem cells promote osteogenic differentiation of human bone marrow mesenchymal stem cells via H19/miR-675/APC axis. Aging. 2020;12:10527–43. https://doi.org/10.18632/aging.103277.
Article
Google Scholar
Li G, et al. Long non-coding RNA-H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA-149/SDF-1 axis. J Cell Mol Med. 2020;24:4944–55. https://doi.org/10.1111/jcmm.15040.
Article
Google Scholar
Wu Y, Jiang Y, Liu Q, Liu CZ. lncRNA H19 promotes matrix mineralization through up-regulating IGF1 by sponging miR-185-5p in osteoblasts. BMC Mol Cell Biol. 2019;20:48. https://doi.org/10.1186/s12860-019-0230-3.
Article
Google Scholar
Bi HU, Wang D, Liu X, Wang G, Wu X. Long non-coding RNA H19 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by regulating microRNA-140-5p/SATB2 axis. J Biosci. 2020. https://doi.org/10.1007/s12038-020-0024-y.
Article
Google Scholar
Wang Y, et al. Obesity regulates miR-467/HoxA10 axis on osteogenic differentiation and fracture healing by BMSC-derived exosome LncRNA H19. J Cell Mol Med. 2021;25:1712–24. https://doi.org/10.1111/jcmm.16273.
Article
Google Scholar
Behera J, Kumar A, Voor MJ, Tyagi N. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice. Theranostics. 2021;11:7715–34. https://doi.org/10.7150/thno.58410.
Article
Google Scholar
Bian W, Xiao S, Yang L, Chen J, Deng S. Quercetin promotes bone marrow mesenchymal stem cell proliferation and osteogenic differentiation through the H19/miR-625-5p axis to activate the Wnt/β-catenin pathway. BMC Complement Med Ther. 2021;21:243. https://doi.org/10.1186/s12906-021-03418-8.
Article
Google Scholar
Han H, Tian T, Huang G, Li D, Yang S. The lncRNA H19/miR-541-3p/Wnt/β-catenin axis plays a vital role in melatonin-mediated osteogenic differentiation of bone marrow mesenchymal stem cells. Aging. 2021;13:18257–73. https://doi.org/10.18632/aging.203267.
Article
Google Scholar
Li T, Jiang H, Li Y, Zhao X, Ding H. Estrogen promotes lncRNA H19 expression to regulate osteogenic differentiation of BMSCs and reduce osteoporosis via miR-532-3p/SIRT1 axis. Mol Cell Endocrinol. 2021;527:111171. https://doi.org/10.1016/j.mce.2021.111171.
Article
Google Scholar
He Q, et al. Stromal cell-derived factor-1 promotes osteoblastic differentiation of human bone marrow mesenchymal stem cells via the lncRNA-H19/miR-214-5p/BMP2 axis. J Gene Med. 2021;23:e3366. https://doi.org/10.1002/jgm.3366.
Article
Google Scholar
Gao Y, et al. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells. J Cell Biochem. 2018;119:6986–96. https://doi.org/10.1002/jcb.26907.
Article
Google Scholar
Hua L, Zhang X. MALAT1 regulates osteogenic differentiation of human periodontal ligament stem cells through mediating miR-155-5p/ETS1 axis. Tissue Cell. 2021;73:101619. https://doi.org/10.1016/j.tice.2021.101619.
Article
Google Scholar
Xiang J, et al. lncRNA SNHG1 attenuates osteogenic differentiation via the miR-101/DKK1 axis in bone marrow mesenchymal stem cells. Mol Med Rep. 2020;22:3715–22. https://doi.org/10.3892/mmr.2020.11489.
Article
Google Scholar
Jiang Y, Wu W, Jiao G, Chen Y, Liu H. LncRNA SNHG1 modulates p38 MAPK pathway through Nedd4 and thus inhibits osteogenic differentiation of bone marrow mesenchymal stem cells. Life Sci. 2019;228:208–14. https://doi.org/10.1016/j.lfs.2019.05.002.
Article
Google Scholar
Li Z, Guo X, Wu S. Epigenetic silencing of KLF2 by long non-coding RNA SNHG1 inhibits periodontal ligament stem cell osteogenesis differentiation. Stem Cell Res Ther. 2020;11:435. https://doi.org/10.1186/s13287-020-01953-8.
Article
Google Scholar
Zhang Y, et al. lncRNA Neat1 stimulates osteoclastogenesis via sponging miR-7. J Bone Miner Res. 2020;35:1772–81. https://doi.org/10.1002/jbmr.4039.
Article
Google Scholar
Ling L, et al. Long noncoding RNA MIRG induces osteoclastogenesis and bone resorption in osteoporosis through negative regulation of miR-1897. Eur Rev Med Pharmacol Sci. 2019;23:10195–203. https://doi.org/10.26355/eurrev_201912_19654.
Article
Google Scholar
Wang W, et al. Biological function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol. 2021;9:645647. https://doi.org/10.3389/fcell.2021.645647.
Article
Google Scholar
Song H, et al. Long non-coding RNA XIST functions as an oncogene in human colorectal cancer by targeting miR-132-3p. J BUON. 2017;22:696–703.
Google Scholar
Liu J, et al. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging. 2019;11:7830–46. https://doi.org/10.18632/aging.102291.
Article
Google Scholar
Liu J, et al. Long noncoding RNA expression profiles of periodontal ligament stem cells from the periodontitis microenvironment in response to static mechanical strain. Stem Cells Int. 2021;2021:6655526. https://doi.org/10.1155/2021/6655526.
Article
Google Scholar
Chen X, et al. Long non-coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation. Exp Ther Med. 2019;17:803–11. https://doi.org/10.3892/etm.2018.7033.
Article
Google Scholar
Kretz M, et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev. 2012;26:338–43. https://doi.org/10.1101/gad.182121.111.
Article
Google Scholar
Özgür E, et al. Differential expression of long non-coding RNAs during genotoxic stress-induced apoptosis in HeLa and MCF-7 cells. Clin Exp Med. 2013;13:119–26. https://doi.org/10.1007/s10238-012-0181-x.
Article
Google Scholar
Bi M, Yu H, Huang B, Tang C. Long non-coding RNA PCAT-1 over-expression promotes proliferation and metastasis in gastric cancer cells through regulating CDKN1A. Gene. 2017;626:337–43. https://doi.org/10.1016/j.gene.2017.05.049.
Article
Google Scholar
Shen X, et al. Upregulated lncRNA-PCAT1 is closely related to clinical diagnosis of multiple myeloma as a predictive biomarker in serum. Cancer Biomark. 2017;18:257–63. https://doi.org/10.3233/cbm-160158.
Article
Google Scholar
Yu L, et al. LncRNA-PCAT1 targeting miR-145-5p promotes TLR4-associated osteogenic differentiation of adipose-derived stem cells. J Cell Mol Med. 2018;22:6134–47. https://doi.org/10.1111/jcmm.13892.
Article
Google Scholar
Zhou Z, Hossain MS, Liu D. Involvement of the long noncoding RNA H19 in osteogenic differentiation and bone regeneration. Stem Cell Res Ther. 2021;12:74. https://doi.org/10.1186/s13287-021-02149-4.
Article
Google Scholar
Wang L, Qi L. The role and mechanism of long non-coding RNA H19 in stem cell osteogenic differentiation. Mol Med (Cambridge, Mass). 2021;27:86. https://doi.org/10.1186/s10020-021-00350-y.
Article
Google Scholar
Yu X, et al. lncRNA SNHG1 induced by SP1 regulates bone remodeling and angiogenesis via sponging miR-181c-5p and modulating SFRP1/Wnt signaling pathway. Mol Med (Cambridge, Mass). 2021;27:141. https://doi.org/10.1186/s10020-021-00392-2.
Article
Google Scholar
Li Z, Shen J, Chan MT, Wu WK. TUG1: a pivotal oncogenic long non-coding RNA of human cancers. Cell Prolif. 2016;49:471–5. https://doi.org/10.1111/cpr.12269.
Article
Google Scholar
Wu X, et al. LncRNA TUG1 competitively binds to miR-340 to accelerate myocardial ischemia-reperfusion injury. FASEB J. 2021;35:e21163. https://doi.org/10.1096/fj.202000827RR.
Article
Google Scholar
Fu D, et al. LncRNA TUG1 aggravates cardiomyocyte apoptosis and myocardial ischemia/reperfusion injury. Histol Histopathol. 2021;36:1261–72. https://doi.org/10.14670/hh-18-381.
Article
Google Scholar
Atsawasuwan P, et al. Secretory microRNA-29 expression in gingival crevicular fluid during orthodontic tooth movement. PLoS ONE. 2018;13:e0194238. https://doi.org/10.1371/journal.pone.0194238.
Article
Google Scholar
Lu W, et al. Sclerostin injection enhances orthodontic tooth movement in rats. Arch Oral Biol. 2019;99:43–50. https://doi.org/10.1016/j.archoralbio.2018.12.011.
Article
Google Scholar
Cano J, Campo J, Bonilla E, Colmenero C. Corticotomy-assisted orthodontics. J Clin Exp Dent. 2012;4:e54-59. https://doi.org/10.4317/jced.50642.
Article
Google Scholar
Wilcko MT, Wilcko WM, Pulver JJ, Bissada NF, Bouquot JE. Accelerated osteogenic orthodontics technique: a 1-stage surgically facilitated rapid orthodontic technique with alveolar augmentation. J Oral Maxillofac Surg. 2009;67:2149–59. https://doi.org/10.1016/j.joms.2009.04.095.
Article
Google Scholar
Varella AM, Revankar AV, Patil AK. Low-level laser therapy increases interleukin-1β in gingival crevicular fluid and enhances the rate of orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2018;154:535-544.e535. https://doi.org/10.1016/j.ajodo.2018.01.012.
Article
Google Scholar
Sakamoto M, et al. Vibration enhances osteoclastogenesis by inducing RANKL expression via NF-κB signaling in osteocytes. Bone. 2019;123:56–66. https://doi.org/10.1016/j.bone.2019.03.024.
Article
Google Scholar
Benjakul S, Jitpukdeebodintra S, Leethanakul C. Effects of low magnitude high frequency mechanical vibration combined with compressive force on human periodontal ligament cells in vitro. Eur J Orthod. 2018;40:356–63. https://doi.org/10.1093/ejo/cjx062.
Article
Google Scholar
Lombardo L, Arreghini A, Huanca Ghislanzoni LT, Siciliani G. Does low-frequency vibration have an effect on aligner treatment? A single-centre, randomized controlled trial. Eur J Orthod. 2019;41:434–43. https://doi.org/10.1093/ejo/cjy076.
Article
Google Scholar
Katchooi M, et al. Effect of supplemental vibration on orthodontic treatment with aligners: a randomized trial. Am J Orthod Dentofac Orthop. 2018;153:336–46. https://doi.org/10.1016/j.ajodo.2017.10.017.
Article
Google Scholar
Lyu C, Zhang L, Zou S. The effectiveness of supplemental vibrational force on enhancing orthodontic treatment. A systematic review. Eur J Orthod. 2019;41:502–12. https://doi.org/10.1093/ejo/cjz018.
Article
Google Scholar
Huang X, Xiong X, Liu J, Zhao Z, Cen X. MicroRNAs-containing extracellular vesicles in bone remodeling: an emerging frontier. Life Sci. 2020;254:117809. https://doi.org/10.1016/j.lfs.2020.117809.
Article
Google Scholar
Roscoe MG, Meira JB, Cattaneo PM. Association of orthodontic force system and root resorption: a systematic review. Am J Orthod Dentofac Orthop. 2015;147:610–26. https://doi.org/10.1016/j.ajodo.2014.12.026.
Article
Google Scholar
Makrygiannakis MA, Kaklamanos EG, Athanasiou AE. Effects of systemic medication on root resorption associated with orthodontic tooth movement: a systematic review of animal studies. Eur J Orthod. 2019;41:346–59. https://doi.org/10.1093/ejo/cjy048.
Article
Google Scholar
Kaklamanos EG, Makrygiannakis MA, Athanasiou AE. Does medication administration affect the rate of orthodontic tooth movement and root resorption development in humans? A systematic review. Eur J Orthod. 2020;42:407–14. https://doi.org/10.1093/ejo/cjz063.
Article
Google Scholar
Haugland L, Kristensen KD, Lie SA, Vandevska-Radunovic V. The effect of biologic factors and adjunctive therapies on orthodontically induced inflammatory root resorption: a systematic review and meta-analysis. Eur J Orthod. 2018;40:326–36. https://doi.org/10.1093/ejo/cjy003.
Article
Google Scholar
Amaro ERS, et al. Estrogen protects dental roots from orthodontic-induced inflammatory resorption. Arch Oral Biol. 2020;117:104820. https://doi.org/10.1016/j.archoralbio.2020.104820.
Article
Google Scholar
Kurohama T, et al. Increasing the amount of corticotomy does not affect orthodontic tooth movement or root resorption, but accelerates alveolar bone resorption in rats. Eur J Orthod. 2017;39:277–86. https://doi.org/10.1093/ejo/cjw038.
Article
Google Scholar
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74. https://doi.org/10.1038/nrg3074.
Article
Google Scholar
Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. 2017;16:167–79. https://doi.org/10.1038/nrd.2016.117.
Article
Google Scholar
Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18. https://doi.org/10.1038/nrc.2017.99.
Article
Google Scholar